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  Cloud computing is a new paradigm for delivering information services to end users, 
offering distinct advantages over traditional IS/IT deployment models, including being 
more economical and offering a shorter time to market. Cloud computing is defi ned 
by a handful of essential characteristics: on - demand self service, broad network access, 
resource pooling, rapid elasticity, and measured service. Cloud providers offer a variety 
of service models, including infrastructure as a service, platform as a service, and 
software as a service; and cloud deployment options include private cloud, community 
cloud, public cloud and hybrid clouds. End users naturally expect services offered via 
cloud computing to deliver at least the same service reliability and service availability 
as traditional service implementation models. This book analyzes the risks to cloud -
 based application deployments achieving the same service reliability and availability 
as traditional deployments, as well as opportunities to improve service reliability and 
availability via cloud deployment. We consider the service reliability and service avail-
ability risks from the fundamental defi nition of cloud computing — the essential char-
acteristics — rather than focusing on any particular virtualization hypervisor software or 
cloud service offering. Thus, the insights of this higher level analysis and the recom-
mendations should apply to all cloud service offerings and application deployments. 
This book also offers recommendations on architecture, testing, and engineering dili-
gence to assure that cloud deployed applications meet users ’  expectations for service 
reliability and service availability. 

 Virtualization technology enables enterprises to move their existing applications 
from traditional deployment scenarios in which applications are installed directly on 
native hardware to more evolved scenarios that include hardware independence and 
server consolidation. Use of virtualization technology is a common characteristic of 
cloud computing that enables cloud service providers to better manage usage of their 
resource pools by multiple cloud consumers. This book also considers the reliability 
and availability risks along this evolutionary path to guide enterprises planning the 
evolution of their application to virtualization and on to full cloud computing enable-
ment over several releases. 

AUDIENCE

 The book is intended for IS/IT system and solution architects, developers, and engi-
neers, as well as technical sales, product management, and quality management 
professionals.

INTRODUCTION
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ORGANIZATION 

 The book is organized into three parts:  Part I,  “ Basics, ”  Part II,  “ Analysis, ”   and  Part
III — , “ Recommendations .  ”   Part I,  “ Basics, ”  defi nes key terms and concepts of cloud 
computing, virtualization, service reliability, and service availability. Part I contains 
three chapters:

 •       Chapter  1 ,  “ Cloud Computing.”       This book uses the cloud terminology and 
taxonomy defi ned by the U.S. National Institute of Standards and Technology. 
This chapter defi nes cloud computing and reviews the essential and common 
characteristics of cloud computing. Standard service and deployment models of 
cloud computing are reviewed, as well as roles of key cloud - related actors. Key 
benefi ts and risks of cloud computing are summarized.  

 •       Chapter  2 ,  “ Virtualization. ”       Virtualization is a common characteristic of cloud 
computing. This chapter reviews virtualization technology, offers architectural 
models for virtualization that will be analyzed, and compares and contrasts  “ vir-
tualized ”  applications to  “ native ”  applications.  

 •       Chapter  3 ,  “ Service Reliability and Service Availability. ”       This chapter defi nes 
service reliability and availability concepts, reviews how those metrics are mea-
sured in traditional deployments, and how they apply to virtualized and cloud 
based deployments. As the telecommunications industry has very precise stan-
dards for quantifi cation of service availability and service reliability measure-
ments, concepts and terminology from the telecom industry will be presented in 
this chapter and used in Part II,  “ Analysis, ”  and Part III,  “ Recommendations. ”     

Part II,  “ Analysis, ”   methodically analyzes the service reliability and availability risks 
inherent in application deployments on cloud computing and virtualization technology 
based on the essential and common characteristics given in Part I.

 •       Chapter  4 ,  “ Analyzing Cloud Reliability and Availability. ”       Considers the service 
reliability and service availability risks that are inherent to the essential and 
common characteristics, service model, and deployment model of cloud com-
puting. This includes implications of service transition activities, elasticity, and 
service orchestration. Identifi ed risks are analyzed in detail in subsequent chap-
ters in Part II.  

 •       Chapter  5 ,  “ Reliability Analysis of Virtualization. ”       Analyzes full virtualization, 
OS virtualization, paravirtualization, and server virtualization and coresidency 
using standard reliability analysis methodologies. This chapter also analyzes the 
software reliability risks of virtualization and cloud computing.  

 •       Chapter  6 ,  “ Hardware Reliability, Virtualization, and Service Availability. ”     This 
chapter considers how hardware reliability risks and responsibilities shift as 
applications migrate to virtualized and cloud - based hardware platforms, and how 
hardware attributed service downtime is determined.  

 •       Chapter  7 ,  “ Capacity and Elasticity. ”       The essential cloud characteristic of 
rapid elasticity enables cloud consumers to dispense with the business risk of 
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locking - in resources weeks or months ahead of demand. Rapid elasticity does, 
however, introduce new risks to service quality, reliability, and availability that 
must be carefully managed.  

 •       Chapter  8 ,  “ Service Orchestration Analysis. ”       Service orchestration automates 
various aspects of IT service management, especially activities associated with 
capacity management. This chapter reviews policy - based management in the 
context of cloud computing and considers the associated risks to service reli-
ability and service availability.  

 •       Chapter  9 ,  “ Geographic Distribution, Georedundancy, and Disaster Recovery. ”      
 Geographic distribution of application instances is a common characteristic of 
cloud computing and a best practice for disaster recovery. This chapter considers 
the service availability implications of georedundancy on applications deployed 
in clouds.    

Part III,  “ Recommendations, ”   considers techniques to maximize service reliability 
and service availability of applications deployed on clouds, as well as the design for 
reliability diligence to assure that virtualized applications and cloud based solutions 
meet or exceed the service reliability and availability of traditional deployments.

 •       Chapter  10 ,  “ Applications, Solutions and Accountability. ”       This chapter consid-
ers how virtualized applications fi t into service solutions, and explains how 
application service downtime budgets change as applications move to the cloud. 
This chapter also proposes four measurement points for service availability, and 
discusses how accountability for impairments in each of those measurement 
points is attributed.  

 •       Chapter  11 ,  “ Recommendations for Architecting a Reliable System. ”       This 
chapter covers architectures and techniques to maximize service availability and 
service reliability via virtualization and cloud deployment. A simple case study 
is given to illustrate key architectural points.  

 •       Chapter  12 ,  “ Design for Reliability of Virtualized Applications. ”       This chapter 
reviews how design for reliability diligence for virtualized applications differs 
from reliability diligence for traditional applications.  

 •       Chapter  13 ,  “ Design for Reliability of Cloud Solutions. ”       This chapter reviews 
how design for reliability diligence for cloud deployments differs from reliability 
diligence for traditional solutions.  

 •       Chapter  14 ,  “ Summary. ”       This gives an executive summary of the analysis, 
insights, and recommendations on assuring that reliability and availability of cloud - 
based solutions meet or exceed the performance of traditional deployment.     
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         The U.S.  National Institute of Standards and Technology  ( NIST ) defi nes cloud comput-
ing as follows:

  Cloud computing is a model for enabling ubiquitous, convenient, on - demand 
network access to a shared pool of confi gurable computing resources (e.g., 
networks, servers, storage, applications, and services) that can be rapidly 
provisioned and released with minimal management effort or service provider 
interaction   [NIST - 800 - 145]  .   

 This defi nition frames cloud computing as a  “ utility ”  (or a  “ pay as you go ” ) consump-
tion model for computing services, similar to the utility model deployed for electricity, 
water, and telecommunication service. Once a user is connected to the computing (or 
telecommunications, electricity, or water utility) cloud, they can consume as much 
service as they would like whenever they would like (within reasonable limits), and 
are billed for the resources consumed. Because the resources delivering the service can 
be shared (and hence amortized) across a broad pool of users, resource utilization and 
operational effi ciency can be higher than they would be for dedicated resources for 
each individual user, and thus the price of the service to the consumer may well be 
lower from a cloud/utility provider compared with the alternative of deploying and 
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operating private resources to provide the same service. Overall, these characteristics 
facilitate outsourcing production and delivery of these crucial  “ utility ”  services. For 
example, how many individuals or enterprises prefer to generate all of their own elec-
tricity rather than purchasing it from a commercial electric power supplier? 

 This chapter reviews the essential characteristics of cloud computing, as well as 
several common characteristics of cloud computing, considers how cloud data centers 
differ from traditional data centers, and discusses the cloud service and cloud deploy-
ment models. The terminologies for the various roles in cloud computing that will be 
used throughout the book are defi ned. The chapter concludes by reviewing the benefi ts 
of cloud computing.  

1.1 ESSENTIAL CLOUD CHARACTERISTICS 

   Per  [NIST - 800 - 145] , there are fi ve essential functional characteristics of cloud 
computing:

  1.     on - demand self service;  

  2.     broad network access;  

  3.     resource pooling;  

  4.     rapid elasticity; and  

  5.     measured service.    

 Each of these is considered individually. 

1.1.1 On-Demand Self -Service

 Per  [NIST - 800 - 145] , the essential cloud characteristic of  “ on - demand self - service ”  
means  “ a consumer can unilaterally provision computing capabilities, such as server 
time and network storage, as needed automatically without requiring human interaction 
with each service ’ s provider. ”    Modern telecommunications networks offer on - demand 
self service: one has direct dialing access to any other telephone whenever one wants. 
This behavior of modern telecommunications networks contrasts to decades ago when 
callers had to call the human operator to request the operator to place a long distance 
or international call on the user ’ s behalf. In a traditional data center, users might have 
to order server resources to host applications weeks or months in advance. In the cloud 
computing context, on - demand self service means that resources are  “ instantly ”  avail-
able to service user requests, such as via a service/resource provisioning website or via 
API calls.  

1.1.2 Broad Network Access 

 Per  [NIST - 800 - 145]   “ broad network access ”  means  “ capabilities are available over the 
network and accessed through standard mechanisms that promote use by heterogeneous 
thin or thick client platforms (e.g., mobile phones, laptops, and PDAs). ”    Users expect 
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to access cloud - based services anywhere there is adequate IP networking, rather than 
requiring the user to be in a particular physical location. With modern wireless net-
works, users expect good quality wireless service anywhere they go. In the context of 
cloud computing, this means users want to access the cloud - based service via whatever 
wireline or wireless network device they wish to use over whatever IP access network 
is most convenient.  

1.1.3 Resource Pooling 

   Per  [NIST - 800 - 145] , the essential characteristic of  “ resource pooling ”  is defi ned as: 
 “ the provider ’ s computing resources are pooled to serve multiple consumers using a 
multi - tenant model, with different physical and virtual resources dynamically assigned 
and reassigned according to consumer demand. ”  Service providers deploy a pool of 
servers, storage devices, and other data center resources that are shared across many 
users to reduce costs to the service provider, as well as to the cloud consumers that pay 
for cloud services. Ideally, the cloud service provider will intelligently select which 
resources from the pool to assign to each cloud consumer ’ s workload to optimize the 
quality of service experienced by each user. For example, resources located on servers 
physically close to the end user (and which thus introduce less transport latency) may 
be selected, and alternate resources can be automatically engaged to mitigate the impact 
of a resource failure event. This is essentially the utility model applied to computing. 
For example, electricity consumers don ’ t expect that a specifi c electrical generator has 
been dedicated to them personally (or perhaps to their town); they just want to know 
that their electricity supplier has pooled the generator resources so that the utility will 
reliably deliver electricity despite inevitable failures, variations in load, and glitches. 

 Computing resources are generally used on a very bursty basis (e.g., when a key 
is pressed or a button is clicked). Timeshared operating systems were developed 
decades ago to enable a pool of users or applications with bursty demands to effi ciently 
share a powerful computing resource. Today ’ s personal computer operating systems 
routinely support many simultaneous applications on a PC or laptop, such as simultane-
ously viewing multiple browser windows, doing e - mail, and instant messaging, and 
having virus and malware scanners running in the background, as well as all the infra-
structure software that controls the keyboard, mouse, display, networking, real - time 
clock, and so on. Just as intelligent resource sharing on your PC enables more useful 
work to be done cost effectively than would be possible if each application had a dedi-
cated computing resource, intelligent resource sharing in a computing cloud environ-
ment enables more applications to be served on less total computing hardware than 
would be required with dedicated computing resources. This resource sharing lowers 
costs for the data center hosting the computing resources for each application, and this 
enables lower prices to be charged to cloud consumers than would be possible for 
dedicated computing resources.  

1.1.4 Rapid Elasticity 

     [NIST - 800 - 145]  describes  “ rapid elasticity ”  as  “ capabilities can be rapidly and elasti-
cally provisioned, in some cases automatically, to quickly scale out, and rapidly released 
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to quickly scale in. To the consumer, the capabilities available for provisioning often 
appear to be unlimited and can be purchased in any quantity at any time. ”  

 Forecasting future demand is always hard, and there is always the risk that unfore-
seen events will change plans and thereby increase or decrease the demand for service. 
For example, electricity demand spikes on hot summer afternoons when customers 
crank up their air conditioners, and business applications have peak usage during busi-
ness hours, while entertainment applications peak in evenings and on weekends. In 
addition, most application services have time of day, day of week, and seasonal varia-
tions in traffi c volumes. Elastically increasing service capacity during busy periods and 
releasing capacity during off - peak periods enables cloud consumers to minimize costs 
while meeting service quality expectations. For example, retailers might experience 
heavy workloads during the holiday shopping season and light workloads the rest of 
the year; elasticity enables them to pay only for the computing resources they need in 
each season, thereby enabling computing expenses to track more closely with revenue. 
Likewise, an unexpectedly popular service or particularly effective marketing campaign 
can cause demand for a service to spike beyond planned service capacity. End users 
expect available resources to  “ magically ”  expand to accommodate the offered service 
load with acceptable service quality. For cloud computing, this means all users are 
served with acceptable service quality rather than receiving  “ busy ”  or  “ try again later ”  
messages, or experiencing unacceptable service latency or quality. 

 Just as electricity utilities can usually source additional electric power from neigh-
boring electricity suppliers when their users ’  demand outstrips the utility ’ s generating 
capacity, arrangements can be made to overfl ow applications from one cloud that is 
operating at capacity to other clouds that have available capacity. This notion of grace-
fully overfl owing application load from one cloud to other clouds is called  “ cloud 
bursting. ”     

1.1.5 Measured Service 

    [NIST - 800 - 145]  describes the essential cloud computing characteristic of  “ measured 
service ”  as  “ cloud systems automatically control and optimize resource use by lever-
aging a metering capability at some level of abstraction appropriate to the type of 
service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage 
can be monitored, controlled, and reported, providing transparency for both the provider 
and the consumer of the utilized service. ”  Cloud consumers want the option of usage -
 based (or pay - as - you - go) pricing in which their price is based on the resources actu-
ally consumed, rather than being locked into a fi xed pricing arrangement. Measuring 
resource consumption and appropriately charging cloud consumers for their actual 
resource consumption encourages them not to squander resources and release 
unneeded resources so they can be used by other cloud consumers.   

1.2 COMMON CLOUD CHARACTERISTICS 

   NIST originally included eight common characteristics of cloud computing in their 
defi nition  [NIST - B] , but as these characteristics were not essential, they were omitted 
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from the formal defi nition of cloud computing. Nevertheless, six of these eight common 
characteristics do impact service reliability and service availability, and thus will be 
considered later in this book.

 •      Virtualization .        By untethering application software from specifi c dedicated hard-
ware, virtualization technology (discussed in Chapter  2 ,  “ Virtualization ” ) gives 
cloud service providers control to manage workloads across massive pools of 
compute servers. 

 •      Geographic Distribution .        Having multiple geographically distributed data center 
sites enables cloud providers fl exibility to assign a workload to resources close 
to the end user. For example, for real - time gaming, users are more likely to have 
an excellent quality of experience via low service latency if they are served by 
resources geographically close to them than if they are served by resources on 
another continent. In addition, geographic distribution in the form of georedun-
dancy is essential for disaster recovery and business continuity planning. Opera-
tionally, this means engineering for suffi cient capacity and network access across 
several geographically distributed sites so that a single disaster will not adversely 
impact more than that single site, and the impacted workload can be promptly 
redeployed to nonaffected sites.  

 •      Resilient Computing .        Hardware devices, like hard disk drives, wear out and fail 
for well - understood physical reasons. As the pool of hardware resources increases, 
the probability that some hardware device will fail in any week, day, or hour 
increases as well. Likewise, as the number of online servers increases, so does 
the risk that software running on one of those online server instances will fail. 
Thus, cloud computing applications and infrastructure must be designed to rou-
tinely detect, diagnose, and recover service following inevitable failures without 
causing unacceptable impairments to user service. 

 •      Advanced Security .        Computing clouds are big targets for cybercriminals and 
others intent on disrupting service, and the homogeneity and massive scale of 
clouds make them particularly appealing. Advanced security techniques, tools, 
and policies are essential to assure that malevolent individuals or organizations 
don ’ t penetrate the cloud and compromise application service or data.  

 •      Massive Scale .        To maximize operational effi ciencies that drive down costs, suc-
cessful cloud deployments will be of massive scale.  

 •      Homogeneity .        To maximize operational effi ciencies, successful cloud deploy-
ments will limit the range of different hardware, infrastructure, software plat-
forms, policies and procedures they support.     

1.3 BUT WHAT, EXACTLY, IS CLOUD COMPUTING? 

 Fundamentally, cloud computing is a new business model for operating data centers. 
Thus, one can consider cloud computing in two steps:
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  1.     What is a data center?  

  2.     How is a cloud data center different from a traditional data center?    

1.3.1 What Is a Data Center? 

   A data center is a physical space that is environmentally controlled with clean electrical 
power and network connectivity that is optimized for hosting servers. The temperature 
and humidity of the data center environment are controlled to enable proper operation 
of the equipment, and the facility is physically secured to prevent deliberate or acci-
dental damage to the physical equipment. This facility will have one or more connec-
tions to the public Internet, often via redundant and physically separated cables into 
redundant routers. Behind the routers will be security appliances, like fi rewalls or deep 
packet inspection elements, to enforce a security perimeter protecting servers in the 
data center. Behind the security appliances are often load balancers which distribute 
traffi c across front end servers like web servers. Often there are one or two tiers of 
servers behind the application front end like second tier servers implementing applica-
tion or business logic and a third tier of database servers. Establishing and operating a 
traditional data center facility — including IP routers and infrastructure, security appli-
ances, load balancers, servers ’  storage and supporting systems — requires a large capital 
outlay and substantial operating expenses, all to support application software that often 
has widely varying load so that much of the resource capacity is often underutilized. 

 The Uptime Institute    [Uptime  and  TIA942]  defi nes four tiers of data centers that 
characterize the risk of service impact (i.e., downtime) due to both service management 
activities and unplanned failures:

 •      Tier I .      Basic  
 •      Tier II .      Redundant components  
 •      Tier III .      Concurrently maintainable  
 •      Tier IV .      Fault tolerant    

 Tier I  “ basic ”  data centers   must be completely shut down to execute planned and pre-
ventive maintenance, and are fully exposed to unplanned failures.  [UptimeTiers]  offers 
 “ Tier 1 sites typically experience 2 separate 12 - hour, site - wide shutdowns per year for 
maintenance or repair work. In addition, across multiple sites and over a number of 
years, Tier I sites experience 1.2 equipment or distribution failures on an average year. ”  
This translates to a data center availability rating of 99.67% with nominally 28.8 hours 
of downtime per year. 

 Tier II  “ redundant component ”  data centers   include some redundancy and so are 
less exposed to service downtime.  [UptimeTiers]  offers  “ the redundant components of 
Tier II topology provide some maintenance opportunity leading to just 1 site - wide 
shutdown each year and reduce the number of equipment failures that affect the IT 
operations environment. ”  This translates to a data center availability rating of 99.75% 
with nominally 22 hours of downtime per year. 

 Tier III  “ concurrently maintainable ”  data centers   are designed with suffi cient 
redundancy that all service transition activities can be completed without disrupting 



SERVICE MODELS 9

service.  [UptimeTiers]  offers  “ experience in actual data centers shows that operating 
better maintained systems reduces unplanned failures to a 4 - hour event every 2.5 
years.    . . .     ”  This translates to a data center availability rating of 99.98%, with nominally 
1.6 hours of downtime per year. 

 Tier IV  “ fault tolerant ”  data centers   are designed to withstand any single failure 
and permit service transition type activities, such as software upgrade to complete with 
no service impact.  [UptimeTiers]  offers  “ Tier IV provides robust, Fault Tolerant site 
infrastructure, so that facility events affecting the computer room are empirically 
reduced to (1) 4 - hour event in a 5 year operating period.    . . .     ”  This translates to a data 
center availability rating of 99.99% with nominally 0.8 hours of downtime per year.  

1.3.2 How Does Cloud Computing Differ 
from Traditional Data Centers? 

 Not only are data centers expensive to build and maintain, but deploying an application 
into a data center may mean purchasing and installing the computing resources to host 
that application. Purchasing computing resources implies a need to do careful capacity 
planning to decide exactly how much computing resource to invest in; purchase too 
little, and users will experience poor service; purchase too much and excess resources 
will be unused and stranded. Just as electrical power utilities pool electric power -
 generating capacity to offer electric power as a service, cloud computing pools comput-
ing resources, offers those resources to cloud consumers on - demand, and bills cloud 
consumers for resources actually used. Virtualization technology makes operation and 
management of pooled computing resources much easier. Just as electric power utilities 
gracefully increase and decrease the fl ow of electrical power to customers to meet their 
individual demand, clouds elastically grow and shrink the computing resources avail-
able for individual cloud consumer ’ s workloads to match changes in demand. Geo-
graphic distribution of cloud data centers can enable computing services to be offered 
physically closer to each user, thereby assuring low transmission latency, as well as 
supporting disaster recovery to other data centers. Because multiple applications and 
data sets share the same physical resources, advanced security is essential to protect 
each cloud consumer. Massive scale and homogeneity enable cloud service providers 
to maximize effi ciency and thus offer lower costs to cloud consumers than traditional 
or hosted data center options. Resilient computing architectures become important 
because hardware failures are inevitable, and massive data centers with lots of hardware 
means lots of failures; resilient computing architectures assure that those hardware 
failures cause minimal service disruption. Thus, the difference between a traditional 
data center and a cloud computing data center is primarily the business model along 
with the policies and software that support that business model. 

1.4 SERVICE MODELS 

     NIST defi nes three service models for cloud computing: infrastructure as a service, 
platform as a service, and software as a service. These cloud computing service models 
logically sit above the IP networking infrastructure, which connects end users to the 
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applications hosted on cloud services. Figure  1.1  visualizes the relationship between 
these service models.   

 The cloud computing service models are formally defi ned as follows.

    •       Infrastructure as a Service  ( IaaS ) .           “ [T]he capability provided to the consumer 
is to provision processing, storage, networks, and other fundamental computing 
resources where the consumer is able to deploy and run arbitrary software, which 
can include operating systems and applications. The consumer does not manage 
or control the underlying cloud infrastructure but has control over operating 
systems, storage, deployed applications, and possibly limited control of select 
networking components (e.g., host fi rewalls) ”   [NIST - 800 - 145] . IaaS services 
include: compute, storage, content delivery networks to improve performance 
and/or cost of serving web clients, and backup and recovery service.  

   •       Platform as a Service  ( PaaS ) .           “ [T]he capability provided to the consumer is to 
deploy onto the cloud infrastructure consumer - created or acquired applications 
created using programming languages and tools supported by the provider. The 
consumer does not manage or control the underlying cloud infrastructure includ-
ing network, servers, operating systems, or storage, but has control over the 
deployed applications and possibly application hosting environment confi gura-
tions ”   [NIST - 800 - 145] . PaaS services include: operating system, virtual desktop, 
web services delivery and development platforms, and database services.  

   •       Software as a Service  ( SaaS ) .           “ [T]he capability provided to the consumer is 
to use the provider ’ s applications running on a cloud infrastructure. The con-
sumer does not manage or control the underlying cloud infrastructure including 

     Figure 1.1.     Service Models.  
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network, servers, operating systems, storage, or even individual application capa-
bilities, with the possible exception of limited user - specifi c application confi gu-
ration settings ”   [NIST - 800 - 145] . SaaS applications include: e - mail and offi ce 
productivity;  customer relationship management  ( CRM ),  enterprise resource 
planning  ( ERP ); social networking; collaboration; and document and content 
management.    

 Figure  1.2  gives concrete examples of IaaS, PaaS, and SaaS offerings.    

1.5 CLOUD DEPLOYMENT MODELS 

     NIST recognizes four cloud deployment models:

 •      Private Cloud .         “ the cloud infrastructure is operated solely for an organization. 
It may be managed by the organization or a third party and may exist on premise 
or off premise. ”   [NIST - 800 - 145]   

Figure 1.2. OpenCrowd’s Cloud Taxonomy. 

Source: Copyright 2010, Image courtesy of OpenCrowd, opencrowd.com. 
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 •      Community Cloud .         “ the cloud infrastructure is shared by several organizations 
and supports a specifi c community that has shared concerns (e.g., mission, secu-
rity requirements, policy, and compliance considerations). It may be managed by 
the organizations or a third party and may exist on premise or off premise ”  
 [NIST - 800 - 145] .  

 •      Public Cloud .         “ the cloud infrastructure is made available to the general public 
or a large industry group and is owned by an organization selling cloud services ”  
 [NIST - 800 - 145] .  

 •      Hybrid Cloud .         “ the cloud infrastructure is a composition of two or more 
clouds (private, community, or public) that remain unique entities but are bound 
together by standardized or proprietary technology that enables data and applica-
tion portability (e.g., cloud bursting for load - balancing between clouds) ”   [NIST - 
800 - 145] .    

 Cloud service providers typically offer either private, community or public clouds, and 
cloud consumers select which of those three to use, or adopt a hybrid deployment 
strategy blending private, community and/or public clouds.  

1.6 ROLES IN CLOUD COMPUTING 

 Cloud computing opens up interfaces between applications, platform, infrastructure, 
and network layers, thereby enabling different layers to be offered by different service 
providers. While NIST  [NIST - C]  and some other organizations propose new roles of 
cloud service consumers ,  cloud service distributors ,  cloud service developers and 
vendors , and  cloud service providers , the authors will use the more traditional roles of 
suppliers, service providers, cloud consumers, and end users, as illustrated in Figure 
 1.3 .   

 Specifi c roles in Figure  1.3  are defi ned below.

 •       Suppliers    develop the equipment, software, and integration services that imple-
ment the cloud - based and client application software, the platform software, and 
the hardware - based systems that support the networking, compute, and storage 
that underpin cloud computing.  

 •       Service providers    own, operate, and maintain the solutions, systems, equipment, 
and networking needed to deliver service to end users. The specifi c service pro-
vider roles are defi ned as: 
�      IP network service providers  carry IP communications between end user ’ s 

equipment and IaaS provider ’ s equipment, as well as between IaaS data centers. 
Network service providers operate network equipment and facilities to provide 
Internet access and/or wide area networking service. Note that while there 
will often be only a single infrastructure, platform, and software service 
provider for a particular cloud - based application, there may be several differ-
ent network service providers involved in IP networking between the IaaS 
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service provider ’ s equipment and end users ’  equipment. Internet service pro-
viders and Internet access providers are examples of network service providers. 
While IP networking service is not explicitly recognized in NIST ’ s service 
model, these service providers have a crucial role in delivering end - to - end 
services to cloud users and can thus impact the quality of experience for end 
users.  

   �       IaaS providers   “ have control of hardware, hypervisor and operating system, to 
provide services to consumers. For IaaS, the provider maintains the storage, 
database, message queue or other middleware, or the hosting environment for 
virtual machines. The [PaaS/SaaS/cloud] consumer uses that service as if it was 
a disk drive, database, message queue, or machine, but they cannot access the 
infrastructure that hosts it ”   [NIST - C] . Most IaaS providers focus on providing 
complete computing platforms for consumers ’  VMs, including operating 
system, memory, storage, and processing power. Cloud consumers often pay 
for only what they use, which fi ts nicely into most companys ’  computing 
budget.  

   �       PaaS providers   “ take control of hardware, hypervisor, OS and middleware, to 
provide services. For PaaS, the provider manages the cloud infrastructure for 
the platform, typically a framework for a particular type of application. The 
consumer ’ s application cannot access the infrastructure underneath the plat-
form ”   [NIST - C] . PaaS providers give developers complete development envi-
ronments in which to code, host, and deliver applications. The development 
environment typically includes the underlying infrastructure, development 
tools, APIs, and other related services.  

     Figure 1.3.     Roles in Cloud Computing.  
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�      SaaS providers   “ rely on hardware, hypervisor, OS, middleware, and application 
layers to provide services. For SaaS, the provider installs, manages and main-
tains the software. The provider does not necessarily own the physical infra-
structure in which the software is running. Regardless, the consumer does not 
have access to the infrastructure; they can access only the application ”  [NIST - C] . 
Common SaaS offerings include desktop productivity, collaboration, sales and 
customer relationship management, and documentation management.    

 •       Cloud consumers ,     (or simply  “ consumers ” ) are generally enterprises offering 
specifi c application services to end users by arranging to have appropriately 
confi gured software execute on XaaS resources hosted by one or more service 
providers. Cloud consumers pay service providers for cloud XaaS resources 
consumed. End users are typically aware only of the enterprise ’ s application; the 
services offered by the various XaaS service providers are completely invisible 
to end users.  

 •       End users  (or simply  users )     use the software applications hosted on the cloud. 
Users access cloud - based applications via IP networking from some user equip-
ment, such as a smartphone, laptop, tablet, or PC.    

 There are likely to be several different suppliers and service providers supporting a 
single cloud consumer ’ s application to a community of end users. The cloud consumer 
may have some supplier role in developing and integrating the software and solution. 
It is possible that the end users are in the same organization as the one that offers the 
cloud - based service to end users.  

1.7 BENEFITS OF CLOUD COMPUTING 

   The key benefi t of cloud computing for many enterprises is that it turns IT from a capital 
intensive concern to a pay - as - you - go activity where operating expenses track usage —
 and ideally computing expenses track revenue. Beyond this strategic capital expense 
to operating expense shift, there are other benefi ts of cloud computing from  [Kundra]  
and others:

 •      Increased Flexibility .      Rapid elasticity of cloud computing enables resources 
engaged for an application to promptly grow and later shrink to track the actual 
workload so cloud consumers are better able to satisfy customer demand without 
taking fi nancial risks associated with accurately predicting future demand.  

 •      Rapid Implementation .      Cloud consumers no longer need to procure, install, and 
bring into service new compute capacity before offering new applications or 
serving increased workloads. Instead, they can easily buy the necessary comput-
ing capacity  “ off the shelf ”  from cloud service providers, thereby simplifying 
and shortening the service deployment cycle.  

 •      Increased Effectiveness .      Cloud computing enables cloud consumers to focus 
their scarce resources on building services to solve enterprise problems rather 
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than investing in deploying and maintaining computing infrastructure, thereby 
increasing their organizational effectiveness.  

 •      Energy Effi ciency .      Cloud service providers have the scale and infrastructure 
necessary to enable effective sharing of compute, storage, networking, and data 
center resources across a community of cloud consumers. This not only reduces 
the total number of servers required compared with dedicated IT resources, but 
also reduces the associated power, cooling, and fl oor space consumed. In essence, 
intelligent sharing of cloud computing infrastructure enables higher resource 
utilization of a smaller overall pool of resources compared with dedicated IT 
resources for each individual cloud consumer.     

1.8 RISKS OF CLOUD COMPUTING 

 As cloud computing essentially outsources responsibility for critical IS/IT infrastructure 
to a service provider, the cloud consumer gives up some control and is confronted with 
a variety of new risks. These risks range from reduced operational control and visibility 
(e.g., timing and control of some software upgrades) to changes in accountability (e.g., 
provider service level agreements) and myriad other concerns. This book considers only 
the risks that service reliability and service availability of virtualized and cloud - based 
solutions will fail to achieve performance levels the same as or better than those that 
traditional deployment scenarios have achieved.    
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     Virtualization   is the logical abstraction of physical assets, such as the hardware plat-
form, operating system (OS), storage devices, data stores, or network interfaces. Vir-
tualization was initially developed to improve resource utilization of mainframe 
computers, and has evolved to become a common characteristic of cloud computing. 
This chapter begins with a brief background of virtualization, then describes the char-
acteristics of virtualization and the lifecycle of a virtual machine (VM), and concludes 
by reviewing popular use cases of virtualization technology.  

2.1 BACKGROUND

 The notion of virtualization has been around for decades. Dr. Christopher Strachey from 
Oxford University used the term virtualization in his book Time Sharing in Large Fast 
Computers  in the 1960s. Computer time sharing meant that multiple engineers could 
share the computers and work on their software in parallel; this concept became known 
as multiprogramming. In 1962, one of the fi rst supercomputers, the Atlas Computer, 
was commissioned. One of the key features of the Atlas Computer was the supervisor, 

2
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responsible for allocating system resources in support of multiprogramming. The Atlas 
Computer also introduced the notion of virtual memory that is the separation of the 
physical memory store from the programs accessing it. That supervisor is considered 
an early OS. IBM quickly followed suit with the M44/44X project that coined the term 
VM. Virtual memory and VM technologies enabled programs to run in parallel without 
knowledge of the existence of the other executing programs. Virtualization was used 
to partition large mainframe computers into multiple VMs, providing the ability for 
multiple applications and processes to run in parallel, and thus better utilize hardware 
resources. With the advent of less expensive computers and distributed computing, this 
ability to maximize the utilization of hardware became less necessary. 

 The proliferation of computers in the 1990s created another opportunity for virtu-
alization to improve resource utilization. VMware and others constructed virtualization 
products to enable myriad applications running on many lightly utilized computers to 
be consolidated onto a smaller number of servers. This server consolidation dramati-
cally reduced hardware - related operating expenses, including data center fl oor space, 
cooling, and maintenance. By decoupling applications from the underlying hardware 
resources that support them to enable effi cient resource sharing, virtualization technol-
ogy enables the cloud computing business model that is proliferating today.  

2.2 WHAT IS VIRTUALIZATION? 

 A simple analogy of virtualization is the picture - in - picture feature of some televisions 
and set top boxes because it displays a small virtual television image on top of another 
television image, thereby allowing both programs to play simultaneously. Computer 
virtualization is like this in that several applications that would normally execute on 
dedicated computer hardware (analogous to individual television channels) are actually 
run on a single hardware platform that supports virtualization, thereby enabling multiple 
applications to execute simultaneously. 

 Virtualization can be implemented at various portions of the system architecture:

 •       Network virtualization  entails virtual IP management and segmentation.  
 •       Memory virtualization  entails the aggregation of memory resources into a pool 

of single memory and managing the memory on behalf of the multiple applica-
tions using it.  

 •       Storage virtualization  provides a layer of abstraction for the physical storage of 
data at the device level (referred to as block virtualization) or at the fi le level 
(referred to as fi le virtualization). Block virtualization includes technologies such 
as storage area network (SAN) and network attached storage (NAS) that can 
effi ciently manage storage in a central location for multiple applications across 
the network rather than requiring the applications to manage their own storage 
on a physically attached device.  

 •       Processor virtualization  enables a processor to be shared across multiple applica-
tion instances.    
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 Virtualization decouples an application from the underlying physical hardware, includ-
ing CPU, networking, memory, and nonvolatile data storage or disk. Application soft-
ware experiences virtualization as a VM  , which is defi ned by  [OVF]  as  “ an encapsulation 
of the virtual hardware, virtual disks, and the metadata associated with it. ”  Figure  2.1  
gives a simple depiction of a typical virtualized server. One of the key components of 
virtualization is the hypervisor   (also called the VM monitor     (VMM); these terms will 
be used interchangeably in this chapter), which supports the running of multiple OSs 
concurrently on a single host computer. The hypervisor is responsible for managing 
the applications ’  OSs (called the guest OSs) and their use of the system resources (e.g., 
CPU, memory, and storage). Virtual machines (VMs) are isolated instances of the 
application software and Guest OS that run like a separate computer. It is the hypervi-
sor ’ s responsibility to support this isolation and manage multiple VM ’ s running on the 
same host computer.   

 A virtual appliance   is a software image delivered as a complete software stack 
installed on one or more VMs, managed as a unit. A virtual appliance is usually deliv-
ered as Open Virtualization Format (OVF) fi les. The purpose of virtual appliances is 
to facilitate the deployment of applications. They often come with web interfaces to 
simplify virtual appliance confi guration and installation. 

2.2.1 Types of Hypervisors 

 There are two types of hypervisors (pictured in Figure  2.2 ):

 •      Type 1 .        The hypervisor runs directly on the hardware (aka, bare metal) to control 
the hardware and monitor the guest OSs, which are on a level above the hypervi-
sor. Type 1 represents the original implementation of the hypervisor.  

Figure 2.1. Virtualizing Resources. 
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 •      Type 2 .        The hypervisor runs on top of an existing OS (referred to as the host 
OS) to monitor the guest OSs, which are running at a third level above the hard-
ware (above the host OS and hypervisor).       

2.2.2 Virtualization and Emulation 

 In the industry, the terms virtualization and emulation are sometimes used interchange-
ably, but they actually refer to two separate technologies. Emulation   entails making one 
system behave like another to enable software that was written to run on a particular 
system to be able to run on a completely different system with the same interfaces and 
produce the same results. Emulation does increase the fl exibility for software to move 
to different hardware platforms, but it does usually have a signifi cant performance cost. 
Virtualization provides a decoupling of an entity from its physical assets. VMs represent 
isolated environments that are independent of the hardware they are running on. Some 
virtualization technologies use emulation while others do not.   

2.3 SERVER VIRTUALIZATION 

   There are three types of server virtualization:

 •       Full virtualization  allows instances of software written for different OSs (referred 
to as guest OSs) to run concurrently on a host computer. Neither the application 
software nor the guest OS needs to be changed. Each VM is isolated from the 
others and managed by a hypervisor or VMM, which provides emulated hard-
ware to the VMs so that application and OS software can seamlessly run on 

Figure 2.2. Type 1 and Type 2 Hypervisors. 
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different virtualized hardware servers. Full virtualization provides the ability to 
support multiple applications on multiple OSs on the same server. In addition 
failovers or migrations can be performed onto servers on different generations 
of hardware. Full virtualization can be realized with hardware emulation that 
supports this separation of the hardware from the applications; however, this 
emulation does result in a performance impact. To address this performance 
impact, hardware - assisted virtualization is available to manage the isolation. This 
emulation does incur a performance overhead that may be partially addressed by 
hardware - assisted virtualization.  

 •       Hardware - assisted virtualization  is similar to full virtualization but has the added 
performance advantage of the processors being virtualization aware. The system 
hardware interacts with the hypervisors and also allows the guest OSs to directly 
process privileged instructions without going through the hypervisor.  

 •       Paravirtualization  is similar to full virtualization in that it supports VMs on 
multiple OSs; however, the guest OSs must be adapted to interface with the 
hypervisor. Paravirtualization provides a closer tie between the guest OS and the 
hypervisor. The benefi t is better performance since emulation is not required; 
however, in order to realize this tighter interface between the guest OS and the 
hypervisor, changes must be made to the guest OS to make the customized API 
calls. Some products support paravirtualization with hardware assist to further 
improve performance.  

 •       OS virtualization  supports partitioning of the OS software into individual virtual 
environments (sometimes referred to as containers), but they are limited to 
running on the same host OS. OS virtualization provides the best performance 
since native OS calls can be made by the guest OS. The simplicity is derived 
from the requirement that the guest OS be the same OS as the host; however, 
that is also its disadvantage. OS virtualization cannot support multiple OSs on 
the same server; however, it can support hundreds of instances of the containers 
on a single server.    

2.3.1 Full Virtualization 

   Full virtualization (depicted in Figure  2.3 ) uses a VM monitor (or hypervisor) to 
manage the allocation of hardware resources for the VMs. No changes are required of 
the guest OS. The hypervisor emulates the privileged operation and returns control to 
the guest OS. The VMs contain the application software, as well as its OS (referred to 
as the Guest OS). With full virtualization, each VM acts as a separate computer, isolated 
from other VMs co - residing on that hardware. Since the hypervisor runs on bare metal, 
the various Guest OSs can be different; this is unlike OS virtualization, which requires 
the virtual environments to be based off an OS consistent with the host OS.   

2.3.1.1 Hardware-Assisted Virtualization.   Hardware - assisted virtualization 
  provides optimizations using virtualization aware processors  . Virtualization - aware pro-
cessors are those that know of the presence of the server virtualization stack and can 
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therefore do things, such as interact directly with the hypervisors or dedicate hardware 
space to VMs. The hypervisor still provides isolation and control of the VMs and allo-
cation of the system resources, but the guest OSs can process privileged instructions 
without going through the hypervisor. Intel and AMD are two of the main providers 
who support hardware - assisted virtualization for their processors.   

2.3.2 Paravirtualization

   Paravirtualization (illustrated in Figure  2.4 ) has a slightly different approach from full 
virtualization that is meant to improve performance and effi ciency. The hypervisor 
actually multiplexes (or coordinates) all application access to the underlying host com-
puter resources. A hardware environment is not simulated; however, the guest OS is 
executed in an isolated domain, as if running on a separate system. Guest OS software 
needs to be specifi cally modifi ed to run in this environment with kernel mode drivers 
and application programming interfaces to directly access the parts of the hardware 

Figure 2.4. Paravirtualization.
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such as storage and memory. There are some products that support a combination of 
paravirtualization (particularly for network and storage drivers) and hardware assist 
that take the best of both for optimal performance.    

2.3.3 OS Virtualization 

     Operating system virtualization consists of a layer that runs on top of the host OS 
providing a set of libraries to be used by the applications to isolate their use of the 
hardware resources as shown in Figure  2.5 . Each application or application instance 
can have its own fi le system, process table, network confi guration, and system libraries. 
Each isolated instance is referred to as a virtual environment   or a container  . Since the 
virtual environment or container concept is similar to that of a VM, for consistency, 
the term  “ virtual machine ”  will be used in subsequent comparisons. The kernel provides 
resource management features to limit the impact of one container ’ s activities on the 
other containers. OS virtualization does not support OSs other than the host OS. Note 
that Figure  2.5  indicates Guest OSs for the application; however, in the case of OS 
virtualization, the Guest OSs must be the same OS as the host operation. The use of 
the term Guest OS is to provide consistency with the other server virtualization types. 
There is very little overhead associated with OS virtualization, since it uses the native 
OS calls and does not need emulation.    

2.3.4 Discussion

 The three primary types of server virtualization all provide a partitioning of applications 
into their own VMs (or virtual environments) and use a hypervisor to perform as the 
host OS that manages the hardware resources on behalf of the applications. In all three 
types, there is no need to make any changes to the application software itself; the 
application software will behave as if it had exclusive access to all of the underlying 

Figure 2.5. Operating System Virtualization. 
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hardware resources. The virtualization types differ in: complexity, ability to support 
one or more OSs, performance, and level of access to hardware resources. Those dif-
ferences are summarized in Table  2.1 . Some examples of products that support the 
virtualization type are also included in the table for reference.     

2.4 VM LIFECYCLE 

   While different virtualization technologies and different implementations support 
somewhat different VM lifecycles, the Distributed Management Task Force  [DSP1057]  
recommends the following standard VM states:

 •      Defi ned .      The virtual system is defi ned (or confi gured) but is not enabled to 
perform tasks, and thus does not consume any resources. The application soft-
ware is not  running in this state.  

 •      Active.      The virtual system is instantiated, and generally resources are enabled to 
perform tasks. The application software is running or runnable in this state.  

 •      Paused .      The virtual system and its virtual resources are disabled from perform-
ing tasks; however, the virtual system and its virtual resources are still instanti-
ated; resources remain allocated. The application software is  not  running in this 
state and is considered temporarily inactive (or quiescent).  

 •      Suspended .      The virtual system and its virtual resources are disabled from per-
forming tasks and the state of the virtual system and its virtual resources are 
saved to nonvolatile data storage. Resources may be de - allocated. The state is 
considered enabled but offl ine.    

 The transitions between these states are illustrated in Figure  2.6  and defi ned as 
follows:

 •       Defi ne  (indicated as  “ create ”  in Figure  2.6 ) entails the defi nition of a new VM.  
 •       Activate  represents a transition from the  defi ned  state to the  active  state, entailing 

the allocation of resources and the enabling of the system. Systems can transition 
from paused  or  suspended  to active with this transition.  

 •       Deactivate  is the deallocation of resources and disabling of the virtual system 
from activate ,  paused , or  suspended  to defi ned.  

 •       Pause  entails the disabling of the virtual system moving from  active  to  paused .  
 •       Suspend  entails the disabling of the virtual system and the moving of the state 

of the virtual system and its resources to nonvolatile data storage transitioning 
from active  or  paused  to  suspended .  

 •       Shut down  entails the notifi cation of the system that it needs to shut down. The 
software then terminates its tasks and itself and then performs the same steps as 
deactivate.

 •       Reboot  entails a soft boot transitioning from  active ,  paused , or  suspended  to 
active . The system remains instantiated and resources remain allocated.  
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     Figure 2.6.     Virtualized Machine Lifecycle State Transitions. 

  Source :   Distributed Management Task Force.  
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 •       Reset  entails a hard boot from  active ,  paused , or  suspended  to  active . State 
information saved during suspend  may be lost with the hard boot.      

 Per  [DSP1057] , the virtual system transitions are defi ned in Table  2.2 .   

2.4.1 VM Snapshot 

 A snapshot   is a mechanism to preserve a copy of the VM at a certain instant in time 
and can include its memory contents, settings, and virtual disk state in order to restore 
the VM and its resources to the point at which the snapshot was taken. Since the snap-
shot needs to capture state information, a pause option may be available to facilitate 
the snapshot, but other options, such as copy - on - write, may be used to avoid the pause. 
Once the snapshot has been successfully created, it may be immediately activated or 
stored for later activation. Snapshots may be continuously built (at intervals) with 
incremental changes from the last snapshot. A snapshot provides a means of recovering 
from a failure in one version of the VM to a more stable (i.e., prefailure) version. 
Snapshot recovery is useful when an update to a VM causes issues, such as system 
instability. Since it represents an older version of the VM, it does not offer seamless 
service recovery for the user in the event of a failure, since it will not have the most 
recent state and session information. Snapshots can be created, applied, and destroyed 
when no longer needed. Snapshots are often used for backup and data recovery 
routines.

2.4.2 Cloning VMs

 Cloning   is a mechanism for making a duplicate copy of a VM (referred to as the parent). 
This is useful when multiple copies are needed of the same VM, such as setting up 
equivalent test environments for a group of testers or students. The two types of clones 
are:

   1.     Once the VM has been copied from its parent, it is completely independent of 
the parent VM. Any changes to the parent do not impact the clone. Some prod-
ucts refer to this as a full clone   . Full clones perform better than linked clones 
because they are independent, but they take longer to set up.  

  2.     Once the VM has been copied from its parent, it shares virtual disks with the 
parent, and thus to function properly, the cloned VM must maintain access to 
its parent. Some products refer to this as a linked clone   .    

 Cloning is the most effi cient way to make a copy of a VM (since it requires 
less time than a full installation of a VM and its guest OS) that is activated to take 
over for a failed VM, to increase the number of VMs to increase capacity, or to be 
used in scenarios as described in Section  2.4.3  for service transition or disaster 
recovery.  
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2.4.3 High Availability Mechanisms 

 High availability mechanisms ensure that an application is continuously available to its 
users. This generally entails redundant components and a heartbeat mechanism that 
quickly detects failure of an active component and automatically recovers service to a 
redundant component. In order to provide the level of fault detection, isolation, and 
recovery required for high availability systems, many virtualization software vendors 
include mechanisms for high availability, data synchronization, and the use of clusters. 
A cluster   is a group of tightly coupled computers that work as a whole to support con-
tinuous service availability even in the event of failures via automatic failover and load 
balancing among members of the cluster. Clusters are used for higher availability or 
scaling purposes. High availability mechanisms associated with virtualization are 
responsible for monitoring and controlling VMs. If a failure is detected by the high 
availability mechanism, then the VM will be restarted on the same or on a different 
computer within its cluster depending on the nature of the failure; state information is 
not generally preserved. Some enhancements to the high availability mechanisms do 
provide data synchronization, including state information to ensure no loss of service 
or data during the recovery. One such mechanism maintains a shadow copy of the 
application in lockstep so that when a failure is detected by the high availability mecha-
nism, the shadow copy of the application can take over with no loss of data or disruption 
for the user.   

2.5 RELIABILITY AND AVAILABILITY RISKS OF VIRTUALIZATION 

 Chapter  5 ,  “ Reliability Analysis of Virtualization, ”  offers a traditional reliability analy-
sis of virtualization technology and its impact on high availability architectures. Chapter 
 6 ,  “ Hardware Reliability, Virtualization and Service Availability, ”  discusses the impact 
of hardware failures on virtualized systems. Chapter  12 ,  “ Design for Reliability of 
Virtualized Applications, ”  explains how traditional system design for reliability can be 
tailored for virtualized applications.    
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     Failures are inevitable in complex systems. Both native and virtualized systems are 
subject to the same fundamental error and failure scenarios: hardware fails, latent 
residual software defects are activated, electrical power is disrupted, and so on. Failures 
and other impairments can impact the service delivered to users in three primary ways:

    •      Service response times can degrade, producing service latency impairments.  

   •      Isolated service requests can fail to respond correctly within an acceptable time, 
producing service reliability impairments.  

   •      Repeated service requests can fail, producing service availability impairments.    

 Not only do virtualization technology and cloud computing introduce additional risks 
that can impair service reliability and service availability, but measurement and account-
ability of impairments change subtly with cloud computing. This chapter explains the 
concepts and details behind traditional metrics and accountabilities. Part II,  “ Analysis, ”  
will consider how these measurements change with cloud computing, and Part III, 
 “ Recommendations, ”  will consider how accountabilities and key quality indicators may 
shift in cloud computing. 

  3 
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 This chapter begins by reviewing errors and failures, and then considers service 
availability, service reliability, and service latency. A brief background on redundancy 
and high availability is given. The chapter concludes with a discussion of the reliability 
considerations of streaming media services.  

   3.1    ERRORS AND FAILURES 

 Residual software or hardware defects will occasionally be activated to produce errors, 
and some errors will escalate and catastrophically impact system operation, thus causing 
critical failures  . If a system doesn ’ t recover from the initial failure promptly, then a 
cascade of secondary failures may be triggered. These concepts are illustrated with an 
ordinary pneumatic tire on an automobile or truck in Figure  3.1  (from  [Bauer10] ). A 
nail on the road presents a hazard or fault that can be activated by driving over it, 
thereby puncturing the tire to create a hole that leaks air (an error). Over time this air 
leak will cause a repairable tire failure, commonly called a  “ fl at tire. ”  If the driver 
doesn ’ t stop driving on a failed tire quickly enough, then the tire will become irrepa-
rably damaged. If the driver continues driving on a fl at tire even after the tire is 
damaged, then the wheel rim will eventually be damaged.   

 These failures may be minor like transmission of a single IP packet being corrupted 
or arriving out of sequence, or they could be major like a software failure that crashes 
a critical process and requires automatic or manual actions to recover service. Just as 
there are a myriad of potential failure scenarios, there is a range of service impacts that 
can accrue from those failures. The primary characteristic of the service impact of a 
failure is the duration of service disruption. Very brief or one - shot transient events can 
often be mitigated by simple mechanisms, like automatic retry/retransmission mecha-
nisms and the impact of these events may result in slightly longer service latency for 
affected transactions. Longer service disruptions are likely to cause service to degrade 
so much that the event is more visible to users. For example: if too many packets in a 
streaming video playback are lost, then the user will see pixilation or other video 
anomalies; if too many packets are lost from an audio program or call, then the user 
will hear degraded audio or periods of silence. If degraded service persists for more 
than a few seconds, then most users will deem the service or session to have failed, 
and will abandon it, or, in many cases, users will retry these requests, thereby increasing 
the load on the system. Figure  3.2  visualizes the failure escalation from transient condi-
tion to service unavailability for a canonical application. Failures with service impact 
of tens or hundreds of milliseconds are often viewed as  “ transient conditions ”  which 

     Figure 3.1.     Fault Activation and Failures.  
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may be detectable by video and audio users but may not be detectable to web or data 
users. As discussed in Section  3.4 ,  “ Service Reliability, ”  depending on exactly how 
service reliability metrics are defi ned and computed, transient conditions may trigger 
impairments in service reliability metrics. Failures of several hundreds of milliseconds 
to several seconds are likely to be noticeable to most end users, and thus will be per-
ceived as periods of degraded user service and should be a cause of concern to enter-
prises and service providers. Service disruptions of longer than a few seconds are likely 
to be considered service outages and thus accrue downtime and impact service avail-
ability metrics.   

 Note that users accessing an application via a wireless device may attribute service 
impairments to their wireless access, especially if they are moving or accessing the 
network during a particularly busy period or from a busy location. Thus, wireless users 
may implicitly attribute some portion of application service failures to the wireless 
access network rather than the application itself.  

   3.2    EIGHT - INGREDIENT FRAMEWORK 

 The eight - ingredient framework  , or 8i, developed by Bell Labs  [Rauscher06]  is a useful 
model for methodically considering all potential system vulnerabilities. The 8i frame-
work ingredients are: software, hardware, power, environment, payload, network, 
human, and policy. Systems are built from  hardware  that hosts application and platform 
 software . The hardware depends directly on electrical  power  and a suitable operating 
 environment  (e.g., acceptable temperature and humidity). Systems interact with users 
and other systems via IP  networks  carrying application  payloads  structured according 
to standard or proprietary protocols. The systems are supported by  human  maintenance 
engineers or operators who follow documented or undocumented procedures and  poli-
cies . Figure  3.3  graphically illustrates a typical system in the 8i context. Each of these 
ingredients plays a crucial role; each ingredient has vulnerabilities and is subject to 
faults, errors, and failures.   

     Figure 3.2.     Minimum Chargeable Service Disruption.  
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 Now let ’ s look at the eight ingredients in detail:

    •      Hardware   .      Systems are built of physical objects made from electronic and physi-
cal components, cables, connectors, fasteners, and so on. Hardware is prone to 
well - known physical failure mechanisms and equipment suppliers are expected 
to deliver hardware with acceptably low hardware failure rates throughout the 
equipment ’ s designed service life. Delivering hardware with acceptably low 
failure rates is achieved by following well - known hardware design for reliability 
and manufacturing quality practices. Hardware should be designed to give soft-
ware visibility, and ideally automatic notifi cation, of hardware failures so system 
software can promptly report the failure and activate automatic recovery mecha-
nisms. Operationally, the system must rapidly detect hardware failures and isolate 
them to the appropriate  Field Replaceable Unit  ( FRU ) so that maintenance engi-
neers can promptly replace the failed FRU to minimize simplex exposure time 
and restore the system to full operational status. Hardware failures are considered 
in Chapter  6 ,  “ Hardware Reliability, Virtualization and Service Availability. ”   

   •      Software   .      Software enables the system ’ s hardware to deliver valuable services 
to users. Software is prone to programming defects, as well as specifi cation, 
architecture, design, and integration fl aws that cause the system to behave incor-
rectly in certain situations. Software failures are considered in Chapter  5 ,  “ Reli-
ability Analysis of Virtualization. ”     

 The remaining six ingredients are external to the system itself, but are crucial in actual 
system operation:

    •      Power   .      Appropriate AC or DC power and proper electrical grounding is required 
for electronic systems to function. This category includes overvoltage and voltage 
spikes caused by lightening, power crosses, and short circuits for systems that 
are externally powered. Battery - powered systems are vulnerable to somewhat 
different hazards such as battery exhaustion and wear out.  

   •      Environment   .      Hardware systems are sensitive to ambient environmental condi-
tions, including: temperature, relative humidity, elevation (because air density is 

     Figure 3.3.     Eight - Ingredient ( “ 8i ” ) Framework.  
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critical for cooling), dust, and corrosive gases (e.g., the air pollution that causes 
acid rain). The system ’ s physical design should assure that the system operates 
properly when maintained within its specifi ed environmental parameters. The 
system must be properly located and installed so that there is suffi cient physical 
clearance for maintenance engineers to work on and around the equipment to 
manipulate cabling and hardware units. The environment must be physically 
secured to prevent deliberate or accidental damage to the system, including 
physical security attacks and theft of hardware.  

   •      Network   .      Systems fi t into a networked solution context in which IP packets are 
passed to and from other systems. The  “ network ”  ingredient transports the appli-
cation ’ s  “ payload ”  ingredient. Crucial facilities (like optical transport fi bers and 
copper cables) and elements (like routers and Ethernet switches, themselves 
subject to 8i vulnerabilities) can fail, thus disrupting prompt and reliable delivery 
of application payloads.  

   •      Payload   .      Systems interact with users and other systems via messages or streams 
of application data passed via IP network facilities and infrastructure. As many 
of the elements that a particular system communicates with are likely to be dif-
ferent types of systems, often from other equipment suppliers, it is essential that 
network elements be tolerant of messages or data streams that might be somewhat 
different than expected. The information passed may be different because other 
elements interpret protocol specifi cations differently, or because they have 
enhanced the protocol in a novel way.  

   •      Human   .      Human beings use, operate, and maintain systems. Humans who perform 
routine and emergency maintenance on systems present a notable risk because 
wrong actions (or inaction) can disable or damage the system. Wrong actions by 
humans can occur for many reasons including: 
    �      documented procedure is wrong, absent, or unavailable;  
   �      man - machine interface was poorly designed, thereby making proper execution 

of procedures more confusing, awkward, or error - prone;  
   �      human was not properly trained; and  
   �      human makes a mistake because they are under stress, rushed, confused or 

tired.    

   •      Policy   .      To successfully operate a complex system, it is essential to have business 
policies and processes that organize workfl ows and govern operations and behav-
ior. Operational policies are required for all of the elements and interoperation 
with other systems and end users, as well as for employees and customers. These 
policies often include adopting industry standards, regulatory compliance strate-
gies, maintenance and repair strategies, service level agreements, and so on. 
Enterprises defi ne specifi c policies, such as standards compliance and  “ profi les, ”  
that defi ne discretionary values for protocols that permit multiple options that 
must be supported by system suppliers. Several policies impact system failure 
rates, including: 
    �      policies for deploying critical software patches and updates;  
   �      policies for skills and training of maintenance engineers and other staff;  
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   �      security policies that assure networks and systems are hardened against cyber 
security attacks. 

 Several policies impact outage recovery times, including:  
   �      emergency outage recovery policies;  
   �      outage escalation policies; and  
   �      technical support agreements with hardware and software suppliers.      

 Readers will note that the formal 8i model conspicuously omitted the data ingredient 
that represents all the confi guration, application, and user information that is required 
to assure proper service delivery. While the 8i inventors felt data could simply be 
lumped with software, the authors of this book consider application, confi guration, and 
user data to be an independent and co - equal ingredient with software and hardware. 
Another pragmatic, if somewhat inelegant, extension of the 8i model is to explicitly 
consider force majeure or disaster events. The importance of considering force majeure 
or disaster events separately from ordinary ingredient failures is that disaster events 
can impact multiple ingredients (e.g., an earthquake might impact commercial power, 
the structural integrity of the data center environment and external IP networking infra-
structure) and simultaneously overwhelm ordinary redundancy mechanisms. As a 
result, disaster events are typically mitigated via distinct business continuity and disas-
ter recovery plans. This book will refer to the 8i model overlaid with a data ingredient 
and disaster event risk as  “ 8i    +    2d. ”    This  “ 8i    +    2d ”  model is depicted in Figure  3.4 .    

   3.3    SERVICE AVAILABILITY 

 When a failure event persists for more than a few seconds, it is likely to impact not 
only isolated user service requests, but also the user - initiated retries of those failed 
requests. Brief service impact events may cause individual transactions or sessions to 
fail, thus prompting the user to retry the transaction or session (e.g., redialing a dropped 

     Figure 3.4.     Eight - Ingredient Plus Data Plus Disaster (8i    +    2d) Model.  
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call); if the fi rst (and perhaps second) retried attempt fails because service is still 
impacted, then the event will often be considered a service outage, and thus impact 
service availability metrics. When service is impacted so long that retried user opera-
tions fail — thereby causing users to abandon their efforts to access the service — the 
service is generally deemed unavailable. 

   3.3.1    Service Availability Metric 

 Service availability can be quantifi ed via the simple Equation  3.1  as service uptime 
divided by the sum of service uptime and service downtime.

  Availability
Uptime

Uptime Downtime
=

+
.

  Equation 3.1.   Basic Availability Formula       

 Note that the values of Uptime and Downtime used to calculate availability can be 
either predicted via mathematical modeling (e.g., an architecture based Markov avail-
ability model) or via actual fi eld measurements (e.g., from outage trouble tickets or via 
service probes). Few enterprises explicitly calculate uptime since it would require a 
constant or at least periodic monitoring and validation of system health; most enter-
prises carefully track service downtime. Equation  3.2  calculates availability based on 
service downtime, as well as the total time the target system(s) was expected to be in 
service (i.e., the minutes during the measurement period that systems were expected to 
be online so planned downtime is excluded).

  Availability
TotalInServiceTime Downtime

TotalInServiceTime
=

−
..

  Equation 3.2.   Practical System Availability Formula       

 TotalInServiceTime is the sum of minutes per month (or other reporting period) that 
the systems in the population were expected to be operational; Downtime is the minutes 
of service unavailability prorated by the percentage of capacity or functionality impacted 
during the outage. 

       IT Infrastructure Library  ( ITIL ) offers the simple formula of Equation  3.3  for 
computing availability:

  Availability
AgreedServiceTime Downtime

AgreedServiceTim
(%) =

−
ee

×100%.

  Equation 3.3.   Standard Availability Formula       

 Note that ITIL  [ITILv3SD]  explicitly uses  “ AgreedServiceTime ”  to highlight that that 
many systems have scheduled maintenance periods during which service can be offl ine 
for maintenance. Thus, AgreedServiceTime explicitly excludes planned downtime from 
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consideration in availability calculations; planned downtime is discussed in Section 
 3.3.7 . 

 While the simple ITIL defi nition of availability may be adequate for many enter-
prise applications, the telecommunications industry has evolved far more sophisticated 
service availability measurements, which are documented in the TL 9000 Measure-
ments Handbook. This book will use these richer TL 9000 service availability measure-
ment concepts. Service availability in the telecommunications industry is formally 
defi ned by  [TL9000]  as:  “ the ability of a unit to be in a state ready to perform a required 
function at a given instant in time or for any period within a given time interval, assum-
ing that the external resources, if required, are provided. ”  The unit against which service 
availability is traditionally normalized is the individual system 1  or network element. 2   

   3.3.2     MTBF  and  MTTR  

 Many readers will be familiar with Equation  3.4 , which uses  mean time between failure  
( MTBF ) and  mean time to repair  ( MTTR ) to estimate availability.

  Availability
MTBF

MTBF MTTR
=

+
.

   Equation 3.4.   Estimation of System Availability from MTBF and MTTR          

 This simple equation is easily understood by considering Figure  3.5 . MTTR is the time 
to return a system to service and MTBF is the time the system is expected to be up or 
online before it fails (again). This means that the system will nominally be online and 

     Figure 3.5.     MTBF and MTTR.  
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  2       Network element  is formally defi ned by [TL9000] as:  “ A system device, entity or node including all relevant 
hardware and/or software components located at one location. The Network Element (NE) must include all 
components required to perform the primary function of its applicable product category. If multiple FRUs, 
devices, and/or software components are needed for the NE to provide its product category ’ s primary func-
tion, then none of these individual components can be considered an NE by themselves. The total collection 
of all these components is considered a single NE. Note: While an NE may be comprised of power supplies, 
CPU, peripheral cards, operating system and application software to perform a primary function, no indi-
vidual item can be considered an NE in its own right. ”  

  1      System is formally defi ned by [TL9000] as:  “ A collection of hardware and/or software items located at one 
or more physical locations where all of the items are required for proper operation. No single item can func-
tion by itself. ”  
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up for MTBF hours before failing, and MTTR hours will nominally be required to 
repair the system and bring it back online. Thus, Equation  3.4  is equivalent to the simple 
availability formula of Equation  3.1  where  MTBF  is used as an estimate of Uptime and 
MTTR is used as an estimate of Downtime.   

 While most readers will have seen predicted MTBF values offered by suppliers 
and standard MTTR values from industry standards, suppliers, and service providers, 
they may not realize that large service providers and enterprises with large populations 
of systems in service will often compute actual MTTR and MTBF based on actual 
performance of deployed equipment, operational policies, and staff. As with mileage 
estimates for automobiles  “  your mileage may vary , ”  but standard MTBF and MTTR 
values — like standard mileage estimates — are a useful baseline when evaluating systems 
and planning deployments. 

 The simpler Equation  3.4  is not generally appropriate for systems that include any 
redundancy for two related reasons:

    •      Redundancy Should Enable Service to Be Restored Far Faster Than the Time It 
Takes to Repair the Failed Element .      Operationally, it should be much faster to 
switch service to a redundant element (e.g., in seconds) rather than to repair the 
failed element, which could take hours. Very fast recovery times contribute to a 
very small  mean time to restore service  ( MTTRS ), which can boost service 
availability.  

   •      Redundant Elements Are Arranged So That Single Failures Will Not Cause 
Service Disruption .      For example, various RAID confi gurations enable individual 
hard disk failures to be masked from application software, and failure of redun-
dant fans or power supplies should not impact service. On systems with redun-
dancy, only a fraction of the failures that will eventually require maintenance 
actions (MTBF) will cause service impact, and hence be considered critical, thus 
improving the  mean time between critical failure s ( MTBCF ).     

   3.3.3    Service and Network Element Impact Outages 

 Complex and redundant systems can generally experience outages that either directly 
impact user service, or outages that only cause a loss of redundancy or other impact 
that does not directly impact user service. Events impacting user service are called 
 service impact outages    and are defi ned by  [TL9000]  as:  a failure where end - user service 
is directly impacted.  Outages that impact primary functionality (what ITIL calls vital 
business function or VBF) of a network element, up to and including user service 
impact, are called  network element impact outages    and are defi ned by  [TL9000]  as: a 
 failure where a certain portion of a network element functionality/capability is lost/
down/out of service for a specifi ed period of time . 

 The distinction between service impact outages and network element impact 
outages is especially important for systems with high availability mechanisms to 
measure the period that a failed component is unavailable and that the system is operat-
ing with no available redundancy, and hence the system is at risk of a prolonged service 
impact outage if another failure occurs before the network element impact outage has 
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been resolved, so the system is restored to normal redundancy. Figure  3.6  illustrates 
this by highlighting both service impact and network element impact outages. Although 
the network element impact outage when B1 is unavailable might be hours or longer, 
since user service is rapidly recovered to element B2, the service impact outage period 
for users is far shorter than the period that B1 is unavailable. Note that until B1 is 
repaired and brought up, service is nonredundant or simplex exposed, so a second 
failure cannot be automatically recovered and thus would produce an extended service 
outage. Thus, well - run enterprises will repair failed components promptly to minimize 
the simplex exposure time of critical services.    

   3.3.4    Partial Outages 

 Larger systems supporting applications with rich functionality for varied user com-
munities and IS/IT maintenance engineers are often far more likely to experience a 
partial functionality or partial capacity outage than they are to be totally and completely 
down. For example, one of several software processes can fail and directly impact either 
the users served by that process or the functionality served by that process. If that failure 
impacts some or the entire primary functionality offered to some or all of the system 
offered for an unacceptably long duration, then the event is considered an outage. 
However, if the event impacts some but not all users or some but not all primary func-
tionality, then the event is a partial outage and the outage should be prorated by the 
percentage of capacity or functionality lost. To properly consider partial outages, the 
telecommunications industry and sophisticated enterprises use prorated partial outage 
downtime formulas, like Equation  3.5 .

  Availability
TotalInServiceTime TotalProratedDowntime

Total
=

−
IInServiceTime

.

   Equation 3.5.   Recommended Service Availability Formula          

     Figure 3.6.     Service and Network Element Impact Outages of Redundant Systems.  
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 TotalInServiceTime is the sum of minutes per month (or other reporting period) that 
the systems in the population were expected to be operational; TotalProratedDowntime 
is the minutes of service unavailability prorated by the percentage of capacity or func-
tionality impacted during the outage. 

 As an example of prorating partial capacity loss outages, consider a  digital sub-
scriber loop access module  ( DSLAM ) that offers high - speed Internet service over 
copper wires to subscribers. Figure  3.7  illustrates a sample solution: xDSL routers in 
subscribers ’  homes connect via copper wires to the DSLAM, which aggregates the 
traffi c onto high - capacity transport network connections to the  Internet service pro-
vider  ’ s ( ISP )  broadband remote access server  ( BRAS ), which eventually connects to 
the public Internet. For engineering and commercial reasons, DSLAMs are generally 
implemented with many individual line cards, each of which services many dozen 
subscribers by directly terminating the copper wires that connect to the xDSL routers 
in subscribers ’  homes. If a single line card fails completely, then all subscribers served 
by that line card will be without Internet service until the line card is replaced; subscrib-
ers served by other line cards in the DSLAM will not be impacted. If the DSLAM was 
provisioned to serve 1000 subscribers in the 31 - day month of January, then the Tota-
lInServiceTime would be 1000 subscribers times 31 days in January times 24 hours per 
day times 60 minutes per hour for a total of 44,640,000 subscriber - minutes of in - service 
time. If the DSLAM experienced a single line card failure in the month which impacted 
100 subscribers for 4 hours, then the TotalProratedDowntime is 100 subscribers times 
4 hours of downtime times 60 minutes per hour for a total of 24,000 impacted subscriber -
 minutes for the month. Monthly availability for this sample DSLAM can then be 
computed via Equation  3.6 .  

  Availability =
−

=
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   Equation 3.6.   Sample Partial Outage Calculation          

     Figure 3.7.     Sample DSL Solution.  
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 Readers can easily see how this calculation can be effi ciently scaled up to cover many 
thousands of DSLAMs in a typical service provider ’ s network:

    •      TotalInServiceTime aggregates the nominal subscriber - minutes (or subscriber -
 seconds) of service that were expected during the measurement period (i.e., 
excluding planned maintenance periods);  

   •      TotalProratedDowntime aggregates the subscriber - minutes (or subscriber -
 seconds) of service impact in the measurement period.     

   3.3.5    Availability Ratings 

 Service availability ratings are commonly quantifi ed as the number of nine ’ s or by 
availability system type;  “ fi ve 9 ’ s ”   or  “ high availability ”  is a common availability 
expectation for critical systems. Table  3.1  below gives the maximum service downtime 
for common availability ratings, per  [GR2841] .   

 Mature organizations will recognize that different enterprise information services 
and applications require different availability ratings. While these ratings will vary 
somewhat based on organizational needs and customer expectations, the standard 

  TABLE 3.1.    Service Availability and Downtime Ratings, per  [GR2841]  

   Number 
of 9 ’ s  

   Service 
Availability 

(%)  
   System 
Type  

   Annualized 
Down 

Minutes  
   Quarterly 

Down Minutes  

   Monthly 
Down 

Minutes  
   Practical 
Meaning  

  1    90    Unmanaged    52,596.00    13,149.00    4,383.00    Down 5 
weeks 
per year  

  2    99    Managed    5,259.60    1,314.90    438.30    Down 4 
days 
per year  

  3    99.9    Well 
managed  

  525.96    131.49    43.83    Down 9 
hours 
per year  

  4    99.99    Fault 
tolerant  

  52.60    13.15    4.38    Down 1 
hour 
per year  

  5    99.999    High 
availability  

  5.26    1.31    0.44    Down 5 
minutes 
per year  

  6    99.9999    Very high 
availability  

  0.53    0.13    0.04    Down 30 
seconds 
per year  

  7    99.99999    Ultra 
availability  

  0.05    0.01     –     Down 3 
seconds 
per year  
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criticality defi nitions from the U.S. Federal Aviation Administration ’ s National Airspace 
System ’ s reliability handbook are probably fairly typical:

    •       CRITICAL  (service availability rating of 99.999%)     “ Loss of this capability 
would raise to an unacceptable level, the risk associated with providing safe and 
effi cient [system] operations  ”   [FAA - HDBK - 006A] .  

   •       ESSENTIAL  (service availability rating of 99.9%)    “  Loss of this capability 
would signifi cantly raise the risk associated with providing safe and effi cient 
[system] operations ”    [FAA - HDBK - 006A] .  

   •       ROUTINE  (service availability rating of 99%)    “  Loss of this capability would 
have a minor impact on the risk associated with providing safe and effi cient 
[system] operations  ”   [FAA - HDBK - 006A] .    

 There is also a  “ safety critical ”    category with service availability rating of seven 9s for 
life - threatening risks and services where  “  loss would present an unacceptable safety 
hazard during the transition to reduced capacity operations  ”   [FAA - HDBK - 006A] . 
Reliability and availability of  “ safety critical ”  services are beyond the scope of this 
book.  

   3.3.6    Outage Attributability 

 It is often convenient to consider attributability of the events that impact service avail-
ability and service reliability. The telecommunications industry factors outage attribut-
ability into three broad and generally applicable categories: product - attributable events, 
customer -  or service - provider attributable events, and external - attributable events. 
These three orthogonal categories are defi ned as follows:

    •       Product - attributed outages    are defi ned in  [TL9000]  as  “  an   outage primarily 
triggered by  
   a)      system design, hardware, software, components or other parts of the system,   
  b)      scheduled outage necessitated by the design of the system,   
  c)      support activities performed or prescribed by  [a supplier]  including documen-

tation, training, engineering, ordering, installation, maintenance, technical 
assistance, software or hardware change actions, etc.,   

  d)      procedural error caused by the  [supplier],  
  e)      the system failing to provide the necessary information to conduct a conclu-

sive root cause determination, or   
  f)      one or more of the above. ”      

   •       Service provider - attributable    (or customer - attributable  )  outages  are defi ned by 
 [TL9000]  as  “  an outage that is primarily attributable to the customer ’ s  [service 
provider ’ s]  equipment or support activities triggered by  
   a)      customer ’ s  [service provider]  procedural errors,   
  b)      offi ce environment, for example power, grounding, temperature, humidity, or 

security problems, or   
  c)      one or more of the above.  
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  Outages are also considered customer  [service provider]  attributable if the cus-
tomer  [service provider]  refuses or neglects to provide access to the necessary 
information for the  [supplier]  to conduct root cause determination . ”     

   •       External - attributable outages    are defi ned in  [TL9000]  as  “ outages caused by 
natural disasters such as tornadoes or fl oods, and outages caused by third parties 
not associated with the [service provider] or the [supplier] such as commercial 
power failures, third - party contractors not working on behalf of the [supplier] or 
[service provider]. ”     

 Outages are also often attributed to root cause categories such as hardware, software 
and procedural or human. While hardware -  and software - attributable outages are fairly 
straightforward, many readers may not be familiar with the technical defi nition of 
procedural error.  [TL9000]  offers the following defi nition of procedural error  : 

        “ An error that is the direct result of human intervention or error. Contributing 
factors can include but are not limited to  

   a)      deviations from accepted practices or documentation,   
  b)      inadequate training,   
  c)      unclear, incorrect, or out - of - date documentation,   
  d)      inadequate or unclear displays, messages, or signals,   
  e)      inadequate or unclear hardware labeling,   
  f)      miscommunication,   
  g)      non - standard confi gurations,   
  h)      insuffi cient supervision or control, or   
  i)      user characteristics such as mental attention, physical health, physical 

fatigue, mental health, and substance abuse.     

   Examples of a Procedural Error include but are not limited to  
   a)      removing the wrong fuse or circuit pack,   
  b)      not taking proper precautions to protect equipment, such as shorting 

out power, not wearing ESD strap, etc.,   
  c)      unauthorized work,   
  d)      not following Methods of Procedures (MOPs)   
  e)      not following the steps of the documentation,   
  f)      using the wrong documentation,   
  g)      using incorrect or outdated documentation,   
  h)      insuffi cient documentation,   
  i)      translation errors,   
  j)      user panic response to problems,   
  k)      entering incorrect commands,   
  l)      entering a command without understanding the impact, or   
  m)      inappropriate response to a Network Element alarm. ”           

   3.3.7    Planned or Scheduled Downtime 

     Information -  and computer - based systems occasionally require planned or preventive 
maintenance to: upgrade or update software, fi rmware, or hardware; grow or alter the 
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system ’ s hardware confi guration; physically move the equipment or alter its network 
confi guration; and so on.  [TL9000]  defi nes  scheduled outage    as follows:

    “ Results from a scheduled or planned maintenance, installation, or manual 
initialization. This includes such activities as parameter loads, software/ fi rm-
ware changes, and NE growth/update, cutover (for example, switch replace-
ment or absorption), hardware or software growth, preventive maintenance, 
routine or scheduled diagnostics, data table change, software patching or 
updates, software generic upgrade, program backup, and data backup. ”     

 Typically enterprises and service providers will plan scheduled outages to occur during 
so - called maintenance windows (i.e., when system usage will be light) to minimize any 
user impact. Maintenance windows are traditionally scheduled in the middle of the 
night where the equipment is physically located, such as between midnight and 4 a.m. 
local time. As global businesses now operate in several time zones across a region, 
continent, or the planet, it has become more challenging to pick low usage periods. 
While maintenance engineers will often require time for preparation work, followed by 
time to execute all of the steps of the Method of Procedure, and additional time for 
postwork activities, any period of user service impact should be minimal. For example, 
while it will invariably take time to download a security or software patch and run the 
installation program, there should be no service impact during that time. Planned 
service impact is possible when the system software is gracefully restarted to activate 
the updated software. Ideally, traffi c will have been drained from the system prior to 
the graceful restart, such as by redirecting user service to an alternate system or by 
instructing all users to log off prior to the planned restart. Some systems even support 
 “ rolling upgrade ”  strategies in which components are restarted individually so that 
traffi c (perhaps at lower capacity) can continuously be served as portions of the system 
are gracefully upgraded and restarted. 

 Periods of service unavailability due to scheduled outages are generally excluded 
from service availability metrics provided that the duration of service impact is not 
longer than expected (e.g., the canonical service disruption time expected for successful 
execution of the particular Method of Procedure). Should the period of service impact 
be signifi cantly longer than expected (e.g., due to a failed procedure execution, or a 
hardware or software failure occurring during execution of the procedure when the 
system was simplex exposed), then the excess service downtime may be recorded as a 
service outage and impact service availability metrics. Planned activities are considered 
in this book under the IT Service Management category of Service Transition as 
described in Section  4.5.4 ,  “ Service Transition. ”    

   3.4    SERVICE RELIABILITY 

 The term reliability is sometimes used in the industry as a superset of service avail-
ability and various other topics, such as Microsoft ’ s statement  “ the reliability [service 
management function] ensures that service capacity, service availability, service conti-
nuity, data integrity and confi dentiality are aligned to the business needs in a cost 
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effective manner ”  [Microsoft]. Rather than adopting a very broad and general defi nition 
of reliability, this book will use the narrow defi nition of reliability given by TL 9000. 

   3.4.1    Service Reliability Metrics 

  “  Reliability ”       is defi ned as  “ the ability of an item to perform a required function under 
stated conditions for a stated time period ”   [TL9000] . Service reliability characterizes 
the ability of a system to provide acceptable service, which means correct or accurate 
service delivered within an acceptable time. Service reliability is essentially the portion 
of service requests that are successfully served (i.e., are not defective) within the 
maximum acceptable service latency. Service reliability can be expressed positively in 
 “ number of 9s ”  style via the formula in Equation  3.7 .

  Service Reliability
Successful Responses

Total Requests
= ×

( )
1000%.

   Equation 3.7.   Service Reliability Formula          

 Since most services are very reliable, it is more convenient to focus on the much smaller 
number of unreliable service events or service defects. These service defects are con-
veniently normalized as defective transactions or operations per million attempts. 
Defects per million   (DPM  ) attempts can be computed via Equation  3.8 .
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   Equation 3.8.   DPM Formula          

 Equation  3.9  converts DPM to service reliability probability, and Equation  3.10  con-
verts service reliability to DPM.
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   Equation 3.9.   Converting DPM to Service Reliability         

  DPM Service Reliability= − ×( % ) , , .100 1 000 000

   Equation 3.10.   Converting Service Reliability to DPM          

 For example, if users attempt to send 123,459,789 instant messages to online subscrib-
ers via a particular messaging service during a measurement period, and all but 4321 
messages are successfully received by the intended recipient within the maximum 
acceptable service latency, then the DPM in this measurement period is computed via 
Equation  3.11 .
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   Equation 3.11.   Sample DPM Calculation           

   3.4.2    Defective Transactions 

  “ Defective service transaction ”    is defi ned by  [TL9000]  as  “ a transaction where there 
was a failure to meet one or more internal and/or defi ned customer requirements con-
cerning the performance of the service. ”  Most application protocols provide return 
codes that can be used to classify nonsuccessful requests into application failures 
(nominally attributable to the application supplier, service provider, or enterprise) and 
request failures (nominally attributable to the user or user equipment). For example, 
consider the return codes from the IETF ’ s  session initiation protocol  ( SIP ), commonly 
used for voice over IP and video over IP applications. Failures nominally attributed to 
software, hardware, or network infrastructure failures include:

    •      Server failure responses, like  500 Server Internal Error  ( “  The server 
encountered an unexpected condition that prevented it from fulfi lling the request  ”  
 [RFC3261] ) or  503 Service Unavailable  ( “  The server is temporarily unable 
to process the request due to a temporary overloading or maintenance of the 
server  ”   [RFC3261] ).  

   •       Replies with service latency of greater than the maximum acceptable service 
latency requirement , as discussed in Section  3.5 ,  “ Service Latency. ”   

   •       Request time outs  — requests with no response that clients time out after the 
maximum number of retries.    

 Note that persistent server failure responses, unacceptably long response latency, or 
request time out will cause a system to be deemed unavailable. 

 Proper application operation and business policies may cause some requests to fail, 
but those failures are not defective service transactions. Failed transactions nominally 
attributed to defective user requests include:

    •       Invalid request , such as  404 Not Found  ( “  The server has defi nitive information 
that the user does not exist at the domain specifi ed in the Request - URI  ”  
 [RFC3261] ), or attempting to log on to a service with incorrect or unauthorized 
credentials.  

   •       Improperly formatted request , such as  400 Bad Request  ( “  The request could 
not be understood due to malformed syntax  ”   [RFC3261] ).  

   •       Business policies , such as  403 Forbidden  ( “  The server understood the request, 
but is refusing to fulfi ll it  ”   [RFC3261] ), or trying to withdraw too much money 
from an automated teller machine.  

   •       Application architecture, confi guration, or deployment , such as  501 Not 
Implemented  ( “  The server does not support the functionality required to fulfi ll 
the request  ”   [RFC3261] ).    



46 SERVICE RELIABILITY AND SERVICE AVAILABILITY

 Note that some operations might erroneously be failed (e.g.,  403 Forbidden ) because 
of a provisioning or confi guration error. In effect, the application is correctly processing 
faulty confi guration data resulting in service being unavailable to some — or even all —
 users. Application software bugs could also cause an incorrect error code to be returned, 
so one must always be cautious when interpreting error codes. 

 Thus, application responses should be carefully reviewed to decide exactly which 
return codes indicate defective transactions that should impact service metrics, and 
which are considered correct application operation.   

   3.5    SERVICE LATENCY 

 Most network - based services execute some sort of transactions on behalf of client users. 
For example, web applications return web pages in response to HTTP GET requests 
(and update pages in response to HTTP PUT requests), telecommunications networks 
establish calls in response to user requests, gaming servers respond to user inputs, media 
servers stream content based on user requests, and so on. Transaction latency directly 
impacts the quality of experience of end users; according to  [Linden] , 500 millisecond 
increases in service latency causes a 20% traffi c reduction for  Google.com , and a 100 
millisecond increase in service latency causes a 1% reduction in sales for  Amazon.com . 

 The latency between the time an application receives a request (e.g. an HTTP GET) 
and the time the application sends the response (e.g., a web page) will inevitably vary 
for reasons, including:

    •      Network Bandwidth .      As all web users know, web pages load slower over lower 
bandwidth (aka,  “ speed ” ) network connections; DSL is better than dial - up, and 
fi ber to the home is better than DSL. Likewise, insuffi cient network bandwidth 
between resources in the cloud — as well as insuffi cient access bandwidth to 
users — causes service latency to increase.  

   •      Caching .      Responses served from cached memory are typically much faster than 
requests that require one or more disk reads.  

   •      Disk Geometry .      Unlike  random access memory  ( RAM ), in which it takes the 
same amount of time to access any memory location, disk storage inherently has 
nonuniform data access times because of the need to move the disk head to the 
physical disk location to access stored data. Disk heads move in two independent 
directions: 
    �      rotationally as the disk storage platters spin; and  
   �      track - to - track, as the disk heads seek between concentric data storage tracks. 

 The physical layout of fi le systems and databases are often optimized to mini-
mize incremental latency for rotational and track - to - track latency to access 
likely data, but inevitably some data operations will require more time than 
others due to physical layout of data on the disk.    

   •      Disk Fragmentation .      Disk fragmentation causes data to be stored in noncontigu-
ous disk blocks. As reading noncontiguous disk blocks requires time - consuming 
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disk seeks between disk reads or writes, additional latency is introduced when 
operating on fragmented portions of fi les.  

   •      Request Queuing .      Queuing is a common engineering technique to improve oper-
ational effi ciency by permitting requests that arrive at the instant that the system 
is busy processing another request to be queued for service rather than simply 
rejecting the requests outright. Assuming that the system is engineered properly, 
request queuing enables the offered load to be served promptly (although not 
instantly) without having to deploy system hardware for the busiest traffi c burst 
(e.g., the busiest millisecond). In essence, request queuing enables one to trade 
(expensive) system hardware capacity for increased service latency.  

   •      Variations in Request Arrival Rates .      There is inevitably some randomness in the 
arrival rates of service requests, and this moment to moment variation is super-
imposed on daily, weekly, and seasonal usage patterns. When offered load is 
higher, request queues will be deeper and hence queuing delays will be greater.  

   •      Unanticipated Usage and Traffi c Patterns .      Database and software architectures 
are confi gured and optimized for certain usage scenarios and traffi c mixes, such 
as cache sizes, confi guration parameters, and similar optimizations. As usage and 
traffi c patterns vary signifi cantly from nominal expectations, the confi gured set-
tings may no longer be optimal, and thus performance will degrade from nominal.  

   •      Network Congestion or Latency .      Bursts or spikes in network activity can cause 
the latency for IP packets traversing a network to increase.    

 Figure  3.8  illustrates the service latency distribution for a sample service. In this 
example, the median (50th percentile) latency is 130 milliseconds, meaning that half 
of the responses are faster than 130 milliseconds, and half are slower than 130 milli-
seconds. The distribution tail is naturally much longer above 130 milliseconds because 
while there are physical limits to the minimum response latency, delays can accu-
mulate for myriad reasons. For this sample solution, the 95th percentile latency is 230 

     Figure 3.8.     Transaction Latency Distribution for Sample Service.  
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milliseconds (less than twice the 50th percentile latency), and the 99.5th percentile is 
320 milliseconds (less than three times the 50th percentile latency). The longest service 
latency in this modest sample data set was 1400 milliseconds.   

 The statistical distribution will vary somewhat from application to application 
based on system architecture and other factors. Several latency data sets for different 
transactions or operations can be captured, and one can test to determine what math-
ematical distribution gives an acceptable model of service latency for the target solu-
tion. Having assumed a normal (or other) mathematical distribution, one can estimate 
the latency of any arbitrary point on the distribution with the appropriate mathematical 
formula based on two reference points, such as the 50th and 95th percentile service 
latency requirements or measured values. 

 A common service quality rule of thumb is that the 95th percentile latency should 
be no more than about twice the 50th percentile latency. Figure  3.9  shows how the data 
set of Figure  3.8  demonstrates compliance to a maximum 50th percentile service 
latency requirement of 200 milliseconds along with a 95th percentile latency target of 
twice that, or 400 milliseconds. Since two points can characterize the parameters of a 
particular mathematical distribution, two points can be used to specify the service 
latency performance requirement of a system. Figure  3.9  overlays 200 millisecond 50th 
percentile and 400 millisecond 95th percentile service latency requirements onto the 
sample data set, and the reader can instantly see that the actual performance is substan-
tially better than these requirements. As the shape of a system ’ s response latency dis-
tribution should remain relatively consistent, one can see how 50th percentile and 95th 
percentile requirements can easily be evaluated for arbitrary latency data sets, thus often 
making 2 point requirements an effi cient specifi cation technique for service latency.   

 While the 50th and 95th percentile latency requirements should be specifi ed to be 
within the range of service latency that is acceptable to users, there is inevitably some 
latency value that is unacceptably slow and above which the user will consider the 
request a failure, even if it does eventually complete successfully. This is easily illus-
trated with web servers. Web browsers include a  “ cancel ”  or  “ stop ”  button that enables 

     Figure 3.9.     Requirements Overlaid on Service Latency Distribution for Sample Solution.  
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frustrated users to abandon an operation (e.g., web page retrieval or update) and a 
 “ reload ”  button to retry the request. Undoubtedly, all readers have stopped a painfully 
slow web page load from an apparently nonresponsive server, and hit  “ reload ”  in the 
hope that retrying the request will be more successful. This same behavior applies to 
other service requests, such as telephone call attempts, where most users will abandon 
a call attempt that doesn ’ t return audible ring back within 4 seconds of the last digit 
being dialed or  “ send/call ”  being pressed. While the actual maximum time an individual 
user will wait for a particular web page to load or telephone call to go through or some 
particular application transaction to complete will vary, the best practice is to set a 
maximum acceptable service latency requirement. In principle, even a successful 
response that takes longer than the maximum acceptable service latency time will be 
deemed unsuccessful by the user, presumably because they have abandoned the request 
(e.g., hit  “ cancel ”  on their browser or ended the call) in frustration. Figure  3.10  overlays 
a maximum acceptable service latency of 4 seconds (4000 milliseconds) onto the 
service latency requirements of Figure  3.9 . Note that the maximum service latency in 
this example is 20 times the 50th percentile requirement and 10 times the 95th percentile 
requirement. The maximum service latency should only rarely be exceeded, and those 
exceptions are generally captured as impairments to service reliability metrics, which 
were discussed in Section  3.4 ,  “ Service Reliability. ”  Note that the spread between the 
50th percentile, 95th percentile, and maximum acceptable service latency is highly 
application dependent. For example, while it may be acceptable for a web - based appli-
cation to occasionally take 10 or 20 times longer to respond to an individual request 
than typical, it is not acceptable for the latency of real - time gaming, voice calling, or 
video streaming to suddenly increase by an order of magnitude or more. As readers 
know from personal experience, snappier, more responsive services are more appeal-
ing, and thus are more likely to be satisfactory to users. The relationship between 
service latency and user satisfaction is application dependent, and different applications 
will have different service latency targets, and different maximum acceptable latency 
expectations.   

     Figure 3.10.     Maximum Acceptable Service Latency.  
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 Note that different transaction types may have signifi cantly different service latency 
profi les, and thus should be tracked separately against separate requirements. For 
example, transactions that query or retrieve data are typically faster than operations that 
update data and establishing a session or call takes longer than terminating a session 
or disconnecting a call. Thus, best practice is to specify two maximum service latency 
points (e.g., 50th percentile and 95th percentile) and absolute maximum acceptable 
service latency for each major type of transaction (e.g., session/connection establish-
ment, query, update, and session/connection termination).  

   3.6    REDUNDANCY AND HIGH AVAILABILITY 

 Critical hardware, software and other failures are inevitable. Figure  3.11  illustrates the 
service impact of a critical failure of standalone (nonredundant) system B1:

   1.     Initially system B1 is  “ up ”  and service is available to users (i.e.,  “ up ” )  

  2.     A critical failure occurs (e.g., hardware failure or software crash), and service 
is unavailable (i.e.,  “ down ” ) to users while maintenance engineers troubleshoot 
and repair system B1  

  3.     When B1 is repaired and returned to service, service is once more available 
( “ up ” ).      

 Thus, a critical failure of a standalone system with no internal redundancy has typical 
outage duration of minutes or hours for a maintenance engineer to troubleshoot the 
problem and repair the system. Enterprises will often purchase hardware maintenance 
contracts to guarantee a maximum response time to assure that spare hardware is 
promptly available to minimize outage duration for hardware - attributed failures. 

 Unplanned outage durations of hours or several minutes are unacceptable for criti-
cal services, so critical systems will be deployed with redundancy and high availability 
middleware so that critical failures can be mitigated via rapid automatic failure detec-
tion and recovery. High availability middleware will automatically detect a critical 
failure, identify the failed unit and shift traffi c to a redundant element so that service 
is rapidly recovered. Assuming a critical system is built from two redundant units 
B1 and B2, Figure  3.12  illustrates how redundancy and high availability mechanisms 

     Figure 3.11.     Downtime of Simplex Systems.  
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mitigate service downtime. Unit B1 is serving some or all of the active traffi c when it 
experiences a critical failure. High availability software and mechanisms detect the 
failure of B1 and redirect traffi c previously served by B1 to redundant element B2; 
after successfully switching over B1 ’ s traffi c to B2, service is once again available for 
all users. The critical failure of element B1 must still debugged and repaired, but user 
service has been restored much, much faster than it would take to troubleshoot and 
repair the failure of B1. After B1 is repaired, the high availability mechanism (e.g., 
load balancer) can then shift traffi c back onto element B1, or B2 can continue as the 
active or primary system and repaired B1 can serve as standby or alternate system.   

   3.6.1    Redundancy 

 Redundancy   in traditional computer - based systems is most often implemented at three 
levels:

   1.     Software Process .      Protected mode operating systems like Linux make software 
processes excellent recoverable units because they can explicitly be terminated 
and restarted without impacting any other processes.  

  2.     Field Replaceable Unit (FRU) Hardware .      As the primary unit of hardware 
repair, it is common to use the FRU as the primary unit of hardware redun-
dancy as well. For instance, compute blade FRUs are convenient units of 
redundancy, especially if blade FRUs can be removed, replaced (or simply 
reseated to diagnose hardware versus software failures), and restarted while 
system is operational.  

  3.     Network Element .      Some services are provided across a cluster or pool of indi-
vidual network elements (e.g., individual rack mount server instances) with a 
mechanism to balance or direct the traffi c load across the pool of individual 
systems. For example, any operational domain name server (DNS) network 

     Figure 3.12.     Downtime of Redundant Systems.  
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element can respond to a DNS query request. Deploying more DNS servers on 
a network increases the probability that at least one DNS server will be available 
to serve user requests.    

 Multiple instances of the same thread type are often implemented within processes to 
improve throughput and performance, especially on multicore processors. While these 
threads are technically redundant, they are not generally useful for robust recovery 
because failures are rarely contained to a single thread within a software process. 

 Redundant hardware, such as a pool of processors or an array of storage devices, 
may also be implemented on a single FRU (or even integrated circuit) for cost, density, 
or other reasons. While the system may continue to operate in a  “ limp along ”  mode 
after one element in the pool has failed, highly available systems are designed to permit 
each FRU to be replaced while the system is in service and to then restore service onto 
the replaced FRU gracefully without requiring a system reboot. Thus, highly available 
systems should support FRU - level redundancy to maintain service while a FRU is being 
replaced, reinitialized and gracefully re - accepting service once it has been successfully 
recovered and re - activated. 

 As the principle of redundancy can be applied from simple components like fans 
in a fan tray, to complex systems like data centers in disaster recovery scenarios, to 
completely different branches of engineering like cables in a suspension bridge, the 
terminology varies somewhat across industries. Fundamentally there are two common 
logical redundancy arrangements: load sharing and active - standby.

   1.     Load Shared   .      In load - shared redundancy arrangements, all operational units are 
actively serving users. By convention,  “  N   ”  refers to the number of units required 
to carry the full engineered service load of the system, and  “  K   ”  refers to the 
number of redundant units confi gured, and hence this confi guration is often 
called  “  N     +     K  load sharing. ”    The smallest load shared confi guration has a single 
unit capable of carrying the full engineered load ( N     =    1) and a single redundant 
unit ( K     =    1); this minimal  “ 1    +    1 load sharing ”  arrangement is typically referred 
to as  “ active – active. ”  By keeping the  “ redundant ”  unit active, there is a lower 
probability of undetected or  “ silent ”  failure of the redundant unit in active –
 active confi gurations compared with active – standby arrangements. For example, 
commercial airplanes are designed with  N     +    1 engine redundancy so that if one 
engine fails on takeoff, the airplane can successfully takeoff, maneuver, and 
land. Another version of  “  N     +     K   ”  exists in which a  “  K   ”  unit is put into service 
only when one of the  “  N   ”  units fails. At that point, it assumes the traffi c previ-
ously being handled by the failed  “  N   ”  unit. Since the  “ K ”  unit is not kept active 
when not in use, the recovery time is slightly longer than the load - shared model; 
however, it has the advantage of requiring less hardware than the active - standby 
model in most cases.  

  2.     Active – Standby   .      As the name suggests, one of the units is actively serving users 
at a time, and the redundant unit is in a standby state not actively serving users. 
In high availability arrangements, the redundant unit is typically powered on 
with platform and application software booted to a predefi ned state. Depending 
on the application and software platform architecture, the redundant unit may 
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be ready to take over for a failed active unit in seconds or longer. The terms 
 “ hot, ”   “ warm, ”  and  “ cold ”  are often loosely used to characterize the readiness 
of the application software on the standby unit. While the precise interpretation 
of hot, warm, and cold failover varies between applications and industries, 
common interpretations of these terms are: 
    •       “ cold standby ”    application software (and perhaps operating system) needs to 

be started on a processor to recover service after failure of active unit;  
   •       “ warm standby ”    application software is running on standby unit, but volatile 

data are periodically (rather than continuously) synchronized with active so 
time is required to rebuild latest system state before standby unit can recover 
service after failure of active; and  

   •       “ hot standby ”    application is running on standby unit and volatile data are kept 
current so standby unit can recover service rapidly after failure of active.      

 Since standby units are not actively delivering service, there is a risk that a hardware 
or software failure has occurred on the standby but has not yet been detected by the 
monitor software that runs when the unit is in standby. Hot and warm standby systems 
should periodically execute diagnostic self - test software to verify that hardware and 
software remains in full working order. The best practice is to routinely switchover 
service to standby units while the active unit is fully functional (and during a mainte-
nance period in case issues arise) to assure that standby units remain fully operational 
and ready to recover service from a failure of an active unit. This should expose any 
previously undetected hardware or software problems when the previously active unit 
is fully operational to recover service if necessary. 

 Hybrid redundancy arrangements are sometimes used for applications with titles 
like primary/secondary or master/backup, in which some functions (e.g., queries) might 
be distributed across any operational element but other operations (e.g., updates) are 
only served by the  “ primary ”  or  “ master ”  instance. If the primary or master fails, then 
an automatic selection process designates one of the secondary or backup instances to 
be the new primary or master.  

   3.6.2    High Availability 

 Hardware and software failures are inevitable. Highly available systems are designed 
so that no single failure causes unacceptable service disruption. To accomplish this, 
systems must be designed to detect, isolate, and recover from failures very rapidly. 
Traditionally, this means that failure detection, containment and isolation, and recovery 
must be both automatic and highly reliable, and hardware redundancy must be engi-
neered into the system to rapidly recover from hardware failures. 

 A basic robustness strategy for a highly available system is illustrated in Figure 
 3.13 . Consider each step in Figure  3.13  separately:

   1.     Failure .      Hardware, software, or other failures will inevitably occur.  

  2.     Automatic Failure Detection .      Modern systems are designed to detect failures 
via myriad mechanisms ranging from direct hardware mechanisms, like parity 



54 SERVICE RELIABILITY AND SERVICE AVAILABILITY

checks, to direct software mechanisms like return codes or expiration of time 
outs, to environmental sensors like temperature or moisture sensors, to sophis-
ticated indirect mechanisms, like integrity audits and throughput monitors. 
Highly available systems will have several tiers of failure detection so that if 
one detection tier misses the initial failure event, then another tier will catch it 
sometime later.  

  3.     Automatic Failure Containment and Isolation .      The system must contain the 
failure extent so that the failure does not cascade to affect more users or services 
than necessary. The system must then correctly diagnose or isolate the failure 
to the appropriate recoverable module so that proper recovery action can be 
initiated. Fault isolation should be as fast as possible so that failure recovery 
action can be promptly activated to shorten service outage, but not so hasty as 
to incorrectly isolate the failure and activate a wrong recovery action. In addi-
tion to prolonging the outage event, activating the wrong recovery mechanism 
(e.g., switching over or restarting the wrong software module) may unnecessar-
ily affect end users who were not impacted by the failure event itself. The situ-
ation when a failure is not isolated to the correct recoverable or repairable 
module is called a  “ diagnostic failure. ”     

  4.     Automatic Failure Recovery .      After isolating the failure to the proper recover-
able module, highly available systems will then automatically activate a recov-
ery action, such as switching service to a redundant module.  

  5.     Service Restored .      System returns to normal operation when service is restored 
onto the redundant module.  

  6.     Full Redundancy Restored .      Replacement of the failed hardware module, repair 
of failed software module, or other action to correct the primary failure is then 
completed promptly to restore the system to fully protected (i.e., redundant) 
status.      

 In high availability systems, failure detection, isolation, and recovery occur auto-
matically, and the duration of impact to service should be less than the maxi-
mum acceptable service disruption latency. Typical high availability systems will 

     Figure 3.13.     Simplifi ed View of High Availability.  
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automatically detect, isolate, and recover from failures in seconds, but some special -
 purpose systems like optical transmission equipment will detect, isolate, and recover 
from failures in milliseconds. 

 If a failure is not automatically detected by the system, then a so - called  “ silent 
failure   ”  situation will exist in which service is not delivered but recovery actions are 
not activated because neither the system nor the human maintenance engineers are 
aware of the failure. Silent failures can occur on either active elements (e.g., a server 
that is nominally available but is not actually accepting new user requests) or redundant/
standby elements (e.g., an underinfl ated or fl at spare tire may be lurking in an automo-
bile trunk for months or years before being detected). Depending on system architecture 
and the specifi c failure, these silent failures may directly impact users (e.g., a server is 
down, but the operations team doesn ’ t know it) or they may not immediately impact 
users but put the system into a vulnerable/simplex state (e.g., spare tire is fl at, but the 
driver doesn ’ t know it). Implementing multiple tiers of failure detection (e.g., guard 
timers, keepalives, throughput monitors, and so on) and routine switchover/execution 
of standby/redundant units is the best practice for mitigating the risk of silent failure. 
For example, if a software process fails in a way that does not trigger an explicit failure 
indication, like a failure return code or processor exception, then the failure should be 
detected via failure of a periodic keep alive/heartbeat mechanism, or via unchang-
ing throughput monitor values, or via other secondary/alternate failure detection 
mechanisms. 

 Figure  3.14  illustrates these high availability principles in the context of canonical 
enterprise application architecture. The example application is built around a load -
 shared pool of server instances S1, S2, and S3 that offer users access to data stored in 

     Figure 3.14.     High Availability Example.  
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a highly available storage array subject to some business rules. An active – standby pair 
of load balancers distributes user traffi c across the available server instances, and a pair 
of security appliances protects the elements from external attack. The example scenario 
illustrated in Figure  3.14  is as follows:

   1.     Critical failure occurs on server instance S1; assume that this prevents S1 from 
responding to requests from end users on the Internet.  

  2.     Active load balancer LB1 observes that server S1 has stopped responding to 
user requests. Since server instances S2 and S3 remain operational, the load 
balancer deduces that S1 has failed and raises an alarm to the  element manage-
ment system  ( EMS ).  

  3.     Server application instances were explicitly designed to be independent with no 
shared information, so failure of S1 does not impact the ability of S2 or S3 to 
deliver service to their users.  

  4.     Active load balancer stops directing any traffi c to S1 and distributes all traffi c 
to S2 and S3. Service is restored for all users.  

  5.     Server S1 is repaired (e.g., by replacing failed hardware or repairing and restart-
ing failed software) and made available. Active load balancer detects recovery 
of S1 and resumes distributing traffi c to S1. Service is restored to full redun-
dancy, and LB1 clears the alarm it raised to the EMS.      

  [Hamilton]  offered the following practical test for the effectiveness of a system ’ s high 
availability architecture and implementation:  “  is the operations team willing and able 
to bring down any server in the service at any time without draining the work load 
fi rst? ”     

   3.7    HIGH AVAILABILITY AND DISASTER RECOVERY 

 While high availability systems are designed to withstand any single failure, occasion-
ally, force majeure or disaster events cause multiple systems to fail simultaneously. For 
example, a fi re, fl ood, or roof collapse in a data center is likely to impact both the 
primary and redundant instances of multiple critical components. As these events over-
whelm high availability mechanisms, an additional tier of business continuity planning 
and disaster recovery is often deployed to protect critical services. Disaster recovery 
strategies for critical services generally rely on both geographically separated redundant 
data center facilities and disaster recovery processes and mechanisms to promptly 
recover critical services to alternate data centers following a disaster. 

 Disaster recovery planning focuses on two key objectives: recovery time objective   
(RTO  ) and recovery point objective   (RPO  ). Figure  3.15  illustrates these objectives in 
the context of a canonical disaster recovery fl ow. A system is operating normally when 
a disaster event occurs, such as an earthquake, fi re, building collapse, or other cata-
strophic event; this catastrophic event causes service to become unavailable. Typically, 
enterprise staff will fi rst see to the safety of all staff and visitors at the site and then 
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assess the damage. If the damage is light, then the enterprise may opt to promptly 
recover service on the equipment in the impacted data center; if the damage is more 
substantial, then the enterprise will declare a disaster and activate their disaster recovery 
plan. The disaster recovery plan will typically involve recovering service to equipment 
in a geographically distant data center that was not impacted by the disaster event.   

 The disaster RTO is the target time to recover service onto the geographically 
remote site from the time the disaster recovery plan was activated via formal disaster 
declaration, to the time application service is recovered to the remote site. Note that as 
data centers often support many end users, and each user will recover service to the 
georedundant site at a somewhat different time, one typically deems the recovery to be 
complete when some percentage of impacted users are fully recovered to the redundant 
site, such as when 90% of users impacted by the disaster are able to successfully access 
service from an alternate data center. Disaster RTOs often range from a few hours to a 
few days. 

 The RPO is the most recent point in time at which system state can be restored 
onto the recovery site. Typically, the geographically redundant system is recovered from 
the last data backup, meaning that any data changes or updates that completed after the 
last data backup will be lost. The RPO is the most recent point in time that system state 
can be recovered following a disaster. For example, with daily backups, the maximum 
disaster RPO should be 24 hours. As all data changes executed in less than the RPO 
time before a disaster are expected to be lost when service is restored following a 
disaster, enterprises should carefully set their RPO and engineer their systems accord-
ingly. Operationally, data changes executed less than the RPO period before a disaster 
are likely to be lost and will either have to be reentered or accepted by the business as 
a permanent data loss. Daily data backups may offer an unacceptably long RPO for 
some enterprise data, so information may be replicated to a remote site to shorten RPO. 
Highly critical data can even be mirrored to assure that the data is securely stored on 
multiple sites before completing a transaction, thus assuring that no critical data will 
be lost due to a disaster. Data replication and related technologies can shorten RPOs to 
hours or minutes, and data mirroring or synchronous write technologies can shorten 
RPOs to seconds or less. 

     Figure 3.15.     Disaster Recovery Objectives.  
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 The RTO and RPO metrics are useful in the context of recovering from critical 
failures, as well as recovering from disasters, although the RTO and RPO for critical 
failures are generally seconds or minutes while the RTO and RPO for disaster events 
are often hours or days. 

 Disaster recovery and geographic redundancy is considered in detail in Chapter  9 .  

   3.8    STREAMING SERVICES 

   Transaction - style services nominally return a single response per request, and thus 
service latency and service reliability is relatively straightforward to measure by con-
sidering the linkage between service requests and their corresponding responses. 
Streaming services, like voice and video calling and conferencing and voice playback, 
are fundamentally different from transaction style services because a single logical 
request (e.g., request to play a video or make a call) can result in a huge number of 
data packets being sent in response. These differences result in somewhat different 
service quality, reliability, and availability risks. 

 This section begins by differentiating the logical data plane, which carries stream-
ing content from the logical control plane, which controls the fl ow of content. Streaming 
service quality metrics are then discussed. A key difference between transaction -
 oriented control traffi c and streaming data traffi c is the expectation of isochrony; iso-
chronal data is covered in Section  3.8.3 , followed by a discussion of streaming quality 
impairments. 

   3.8.1    Control and Data Planes 

     Streaming services like voice or video have two fundamental components: session 
control and user data.

    •      Session  control  covers operations to create, manipulate, and terminate streaming 
service sessions. IETF ’ s Session Initiation Protocol (SIP) is a protocol used to 
control voice calls and video sessions.  

   •      User  data  carry digitally encoded audio/voice or video content to the user, typi-
cally via IETF ’ s  real - time protocol  ( RTP ).    

 It is often convenient to view control and data as two logical planes of network traffi c; 
a small number of largely asynchronous control plane messages  “ control ”  a much larger 
volume of synchronous data plane traffi c. Control plane traffi c is generally transaction 
oriented so that each request to establish a session produces a fi nite and well - defi ned 
protocol exchange. While the session setup requires only a handful of control plane 
messages to be exchanged, the audio and/or video content of the call/session will typi-
cally be carried in dozens of RTP packets per second containing digitized audio and/
or video for the duration of the session.  
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   3.8.2    Service Quality Metrics 

 While it is theoretically possible to measure the service reliability of a media stream 
(e.g., the number of packets per million sent that are not correctly received within the 
maximum acceptable latency), that measure is not particularly useful because digital 
decoders are designed to mask occasional lost or late packets via concealment algo-
rithms (e.g., replaying the last audio packet received or continuing to display the last 
video image). Instead of traditional service reliability metrics, service quality of stream-
ing sessions is often characterized via several of the following metrics:

    •        Mean Opinion Score   ( MOS ) .        The quantitative 1 (worst) thru 5 (best) mean 
opinion score is a standard way (e.g.,  [P.800], [BT.500] ) to characterize multi-
media quality of service. Standard defi nitions of MOS values are given in Table 
 3.2 .    

   •       Session setup latency  is the time it takes to establish a new session (e.g., voice 
or video call) or start rendering requested contents (e.g., begin playing a prere-
corded video or switch to a different television channel).  

   •      Impacted or Severely Impacted Seconds or Units of Streaming Service .      Different 
streaming services have somewhat different units of impact. While video impact 
may be measured in impacted frames, audio (and perhaps online gaming) impact 
is measured in milliseconds or seconds of impact or loss of data.  

   •      Lip Sync .        For streams where both audio and video are provided, it is impor-
tant for visual images of moving mouths and other sound + producing actions 
to remain in sync with the audio sound track. If the so - called lip sync is off by 
more than about 50 milliseconds, then users ’  quality of experience will be 
impacted.  

   •      Session Retention or Retainability .          Captures the probability that the stream 
remains operational until normal termination (e.g., reaching the end of the pre-
recorded material or deliberate termination of a call by one of the participants).     

  TABLE 3.2.    Mean Opinion Scores 

   Mean Opinion 
Score  

    [P.800]  
Quality Rating  

    [BT.500]  
Impairment Rating  

    [P.800]   “ Effort Required 
to Understand the Meaning 

of Sentences ”   

  5    Excellent    Imperceptible    Complete relaxation 
possible; no effort required  

  4    Good    Perceptible, but 
not annoying  

  Attention necessary; no 
appreciable effort required  

  3    Fair    Slightly annoying    Moderate effort required  
  2    Poor    Annoying    Considerable effort required  
  1    Bad    Very annoying    No meaning understood with 

any feasible effort  
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   3.8.3    Isochronal Data 

   The dictionary  [Webster]  defi nes  isochronal  as  “ uniform in time; having equal duration; 
recurring at regular intervals. ”  Streaming data for real - time communications is inher-
ently isochronal to assure that the audio and/or video content that was encoded by the 
sender ’ s device is promptly transported across the network and available for timely 
decoding into an analog representation for the receiving party to enjoy. While modern 
encoding standards for audio and video streams aggressively compress redundant data 
(e.g., suppress  “ silent ”  audio periods and unchanging video images to reduce network 
usage), the data remains largely isochronal. 

 If the communications is not isochronal, then the receiver has two undesirable 
options:

   1.     Vary the pace of rendering the data to track with the arrival rate, so voice/video 
may be compressed (e.g., higher pitch audio) when traffi c is received faster and 
slower (e.g., lower audio pitch) when congestion or other factors delays network 
transmission  

  2.     Maintain an isochronal rendering schedule, and if appropriate data isn ’ t avail-
able when required then attempt to conceal the missing data (e.g., by fi lling the 
 “ dead ”  spot by replaying previous data) to minimize the user service impact.    

 After all, the speakers and displays that render digitized audio and video content are 
fundamentally isochronal: every few milliseconds, they must be presented with audio 
or video data to render, or the listener will hear silence and the viewer will see a frozen 
image, jerky video, pixilation, or other visual impairments. To assure the highest quality 
of rendered audio and video streams, modern systems maintain an isochronal rendering 
schedule and receiving systems use de - jitter buffers to compensate for inevitable packet 
by packet variations in transmission latency across IP networks.  

   3.8.4    Latency Expectations 

 Streaming sessions are fundamentally both unidirectional and noninteractive (e.g., 
playing prerecorded audio or video content) or bidirectional, interactive, or conversa-
tional (e.g., a voice or video call). Noninteractive streams have modest bearer latency 
expectations: the content should begin rendering fairly promptly, but few users will 
notice if rendered content actually took hundreds of milliseconds or seconds to be 
streamed from the server, traverse the network, decompress, and be rendered. Interac-
tive or conversational audio and video streams have strict latency expectations so that 
conversations can maintain a familiar and comfortable dialog between participants that 
is similar to traditional face - to - face communications. 

 The  International Telecommunications Union  ( ITU ) modeled the service quality 
perception of users to varying mouth - to - ear delays (i.e., the latency from the time 
one party speaks into a telephone and the time the other party hears their words); 
the results are shown in Figure  3.16 . When mouth - to - ear latency is below 200 milli-
seconds, users are very satisfi ed; when latency doubles to 400 milliseconds, some users 
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are dissatisfi ed; as latency increases, further more users become dissatisfi ed. This result 
should track with readers ’  personal experience with older wireless phones: when mouth -
 to - ear latency gets too long, people inadvertently speak over each other because the 
natural conversational rhythms that they are accustomed to do not work when latency 
increases past a certain point. Forcing users to explicitly alter their conversational style 
to use a higher latency communications solution decreases their satisfaction.   

 Thus, minimizing one - way latency is very important for interactive or conversa-
tional streaming services, so encoders, de - jitter buffers, decoders, and other elements 
in the path of bearer data must be designed and tuned for low latency.  

   3.8.5    Streaming Quality Impairments 

 In addition to end - to - end latency, the quality of streaming services is impacted by the 
following:

    •      Packet Loss .          IP networks occasionally lose packets, and thus, IP protocols, 
including those carrying audio and video streams across the Internet, must be 
prepared to conceal lost or late IP packets. Two common lost packet concealment 
strategies are to replay previous data or to fi ll with benign content like silence.  

   •       Jitter  is the variation in packet arrival rates. Receivers typically implement de -
 jitter buffers that introduce latency to give packets more time to traverse the IP 
network and be resequenced, thereby increasing the probability that data packets 
will be available at the moment that the decoder needs them to render media 
to the user. While larger de - jitter buffers — meaning greater latency nominally 

     Figure 3.16.     ITU - T G.114 Bearer Delay Guideline. 

   Source:    International Telecommunications Union [ITU - T G.114].   
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consumed by de - jitter buffer to collect and resequence late IP packets — reduces 
the risk of dropping late packets, it directly increases end - to - end media latency. 
Less jitter permits smaller de - jitter buffers to be used without reducing service 
quality, thus shorting end - to - end media latency.      

   3.9    RELIABILITY AND AVAILABILITY RISKS OF CLOUD COMPUTING 

 Chapter  4 ,  “ Analyzing Cloud Reliability and Availability, ”  considers how the essential 
and common characteristics of cloud computing introduce new risks to service reli-
ability and service availability. The remaining chapters in Part II,  “ Analysis, ”  explore 
these risks in detail. Chapter  10 ,  “ Applications, Solutions and Accountability, ”  consid-
ers how cloud service models change accountability and measurement contexts for 
service reliability and availability impairments, and the remainder of Part III,  “ Recom-
mendations, ”  discusses how to mitigate the risks to service reliability and service 
availability of cloud computing.  
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     The technical challenge this book considers is how one can assure that the benefi ts of 
cloud computing (see Section  1.7 ) are achieved without diminishing service reliability 
and service availability to levels below those achieved by traditional application deploy-
ment models. While the specifi c reliability and availability risks of a particular applica-
tion are determined by the architecture, deployment, and operational details of the 
deployed application, one can consider and usefully analyze the reliability and avail-
ability risks inherent to cloud computing. 

 This part of the book (Part II,  “ Analysis ” ) analyzes the risks to service reliability 
and availability of cloud computing; Part III,  “ Recommendations, ”  discusses techniques 
for minimizing the service reliability and reliability risks of cloud computing. This 
chapter frames the general expectations for service reliability and service availability 
of cloud computing, and gives an overview of how the essential and common charac-
teristics of cloud computing and cloud service and deployment models can impact those 
expectations. Subsequent chapters in Part II,  “ Analysis, ”  of this book consider these 
risks in detail.  

   4.1    EXPECTATIONS FOR SERVICE RELIABILITY AND AVAILABILITY 

 Users ’  baseline expectations for service reliability and service availability are largely 
determined by the behavior of the service they have historically received. For example, 
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users will expect the service reliability and service availability of  long - term evolution  
( LTE ) fourth - generation wireless to be at least as good as the second -  or third - generation 
wireless service (e.g.,  Universal Mobile Telecommunications System  ( UMTS ),  Global 
System for Mobile Communication s ( GSM ),  Code Division Multiplex Access  ( CDMA ), 
 Wideband Code Division Multiplex Access  [ WCDMA ]) they received previously, and 
subscribers ’  expectations for  Internet Protocol Television  ( IPTV ) service are set in the 
context of the terrestrial free to air, cable, or satellite service they currently receive. 
Thus, the initial expectation for applications delivered via cloud computing is likely 
to be that service reliability and service availability is equivalent to the reliability and 
availability offered via a traditional, native application deployment architecture. Con-
cretely, an end user accessing a service on the Internet from their browser or client 
application should not experience lower service reliability or service availability 
because the application is deployed on a computing cloud rather than natively in a 
traditional data center. 

 This expectation cascades to individual applications themselves; if an enterprise 
( “ consumer ”  in cloud parlance) expects an application to achieve  “ fi ve 9 ’ s ”  service 
availability when traditionally deployed on native hardware, then they are likely to 
expect that application to achieve fi ve 9 ’ s service availability when deployed on a 
virtualized platform (e.g., as a virtual appliance). Users will expect the same service or 
transactional reliability from cloud - based deployments as well. This means that the rate 
of failed transactions (e.g., failed calls and unsuccessful or hung web page loads) should 
be no higher for cloud deployment than for traditional deployment. Therefore, the 
analysis and recommendations of this book will consider the feasible and likely service 
reliability and service availability of virtualized and cloud - based applications compared 
with the baseline of native deployment.  

   4.2    RISKS OF ESSENTIAL CLOUD CHARACTERISTICS 

 This section considers the reliability and availability risks of each of the essential 
characteristics of cloud computing (see Section  1.1 ): on - demand self - service, broad 
network access, resource pooling, elastic growth, and measured service. 

   4.2.1    On - Demand Self - Service 

 On - demand self - service transforms service provisioning from a rare special case to 
a key function of cloud - based applications. In particular, on - demand self - service is 
key for rapid elasticity by enabling cloud consumers to order more resource capacity 
on the fl y as offered load increases. For certain applications and certain customers, 
self - service provisioning functionality might be so important that loss of self - service 
provisioning functionality is deemed a partial service outage and is prorated appro-
priately. Thus, service reliability and service latency of self - service provisioning 
operations become key quality indicators of cloud computing. Specifi cation of key 
quality indicators is discussed in Section  8.2.2 ,  “ Service Reliability and Availability 
Measurements. ”   
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   4.2.2    Broad Network Access 

 Wireless and wireline access networks, in conjunction with wide area networking, will 
typically connect users of cloud computing services to the cloud data center hosting 
the servers executing the cloud consumer ’ s application software. Thus, IP networking 
service availability, reliability, and latency directly impact users ’  quality of experience. 
While modern wireline networks generally offer consistently high service reliability 
with low latency, wireless networking — especially mobile wireless networking — is 
inherently subject to additional factors that can adversely impact quality, reliability, 
latency, and availability of IP networking service. Service quality, reliability, and avail-
ability of wireless and wireline IP networking is beyond the scope of this book.  

   4.2.3    Resource Pooling 

 Resource pooling enables service providers to boost resource utilization and thereby 
drive down costs. Resource pooling raises several potential service risks:

    •      Virtualization Risks to Service Reliability and Service Availability .      Virtualiza-
tion technology makes it practical to pool and share compute, memory, net-
working, and storage resources. Virtualization technology introduces system 
reliability risks, as well as changing software reliability risks (both covered in 
Chapter  5 ,  “ Reliability Analysis of Virtualization ” ) and hardware reliability risks 
(covered in Chapter  6 ,  “ Hardware Reliability, Virtualization, and Service 
Availability ” ).  

   •      Service Latency Jitter Due to Resource Scheduling and Contention .      Discussed 
in Chapter  7 ,  “ Capacity and Elasticity. ”   

   •      Service Disruptions Due to Live (Online) Virtual Machine (VM) Migration .      To 
assure effi cient resource utilization, cloud service providers are likely to leverage 
online and offl ine migration capabilities supported by virtualization products to 
maximize resource utilization (e.g., consolidating workloads and taking unneeded 
capacity temporarily offl ine) and to complete routine and service transition 
actions (discussed in Section  11.3 ,  “ IT Service Management Considerations ” ). 
Online workload migration carries the risk that user service will be delayed or 
impacted, possibly causing some service requests or transactions to fail (impact-
ing service reliability metrics) or for some operations to be delayed (impacting 
service latency metrics). Occasionally, some online migration actions may fail 
to complete successfully and impact all users who were being served by the 
impacted application instance. These potential risks must be balanced against the 
benefi ts of online migration and its potential to greatly reduce downtime that 
would be realized on more traditional systems.     

   4.2.4    Rapid Elasticity 

 Rapid elasticity enables service capacity to expand and contract rapidly while the 
service is online. The authors will use the term  “ growth ”  to refer to expansion of service 
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capacity and  “ de - growth ”  to refer to contraction of resource capacity. For example, a 
traditional hardware  “ growth ”  procedure is to add more RAM or another hard disk 
drive to a server that is installed and nominally in production service. Likewise, a 
traditional  “ de - growth ”  procedure would be to remove RAM or a hard disk drive that 
is no longer required by one system; a subsequent  “ growth ”  operation would presum-
ably install that reclaimed RAM or hard disk drive into another system that could benefi t 
from the additional resources. Growing or de - growing engineered capacity is tradition-
ally a service impacting operation and is often executed offl ine. 

 In the context of cloud computing, elastic capacity  “ degrowth ”  is the logical oppo-
site of elastic capacity growth. Rapid elasticity contrasts with traditional application 
architectures where systems are explicitly dimensioned for a particular engineered 
capacity. For example, the resource capacity allocated for a particular application might 
elastically grow during a busy period (e.g., the holiday shopping season for a retailer), 
and then de - grow after the holidays when the additional resource capacity is no longer 
required. Since cloud consumers pay for resources allocated to them (e.g., per VM per 
month charge), de - growing capacity that is no longer required reduces the cloud con-
sumer ’ s operating expenses. 

 Rapid elasticity introduces several general risks:

    •      Service Impact of Growth/Degrowth Operations .      Rapid elasticity should have 
no service impact on active users; this requirement should be explicitly specifi ed 
and verifi ed.  

   •      Reliability and Latency of Growth/Degrowth Operations .      Growth and de - growth 
operations are inherently complex and present a direct risk to availability of 
engineered capacity to serve offered load. Transactional reliability and transac-
tional latency of online growth and de - growth operations are key metrics. Critical 
software bugs can cause applications to crash or hang as databases and confi gura-
tion tables are expanded or contracted, or when executing any of the myriad other 
online operations necessary to support rapid online elasticity.  

   •      Elasticity Failure .      If service is not able to grow capacity fast enough to track 
with increases in offered load before spare online capacity is exhausted, then 
some users will not be served with acceptable service quality, reliability and 
latency due to insuffi cient online capacity to serve offered load. Therefore, over-
load control mechanisms will still be needed in these cases to manage the 
increases in offered load before suffi cient online capacity has been added.    

 These risks are considered in Chapter  7 ,  “ Capacity and Elasticity. ”  
 In addition, the infrastructure as a service (IaaS) service model of cloud computing 

completely transforms the roles and responsibilities regarding capacity engineering. 
IaaS suppliers are responsible for providing computing resources to cloud consumers 
instantly on - demand, and application suppliers and/or cloud consumers are responsible 
for requesting and assimilating additional resources fast enough so that all offered load 
is served with acceptable service latency and service reliability. As specifi c IaaS service 
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providers inevitably have fi nite resources that are shared across cloud consumers, it is 
possible that occasionally the IaaS ’ s pool of resources will be fully allocated, and thus 
additional resource requests may be denied. In this case, the application may burst out 
of the cloud to engage available resources offered by another cloud. Someone (e.g., 
cloud consumer or IaaS service provider) is responsible for orchestrating the cloud burst 
to assure successful elasticity to an alternate cloud and appropriate resource release 
when those resources are no longer required. 

   4.2.4.1    Policy Considerations.     Since cloud elasticity provides the promise of 
infi nite capacity for an application, from a business point of view, this is often tempered 
by affordability. Operational policies defi ne guidelines for the capacity, availability, 
reliability, security, data, privacy, and quality of service requirements that must be met. 
Those policies are the basis for determining the cost of support and help to determine 
how much the system can grow and stay within that budget. Policies can also defi ne 
system boundaries, that is, where the servers and data must be located to meet regula-
tory standards or quality of service requirements. Policies are thus used to set up the 
confi guration and to monitor adherence to the agreed upon requirements. If the require-
ments change (e.g., the capacity increases), then additional resources will need to be 
purchased, and the policies are changed accordingly. The reverse is true if the require-
ments change per a decrease in expectations (e.g., decrease in needed capacity support). 
Policies will be discussed in later sections concerning their role in service orchestration 
(i.e., in Section  8.2 ,  “ Policy - Based Management ” ).   

   4.2.5    Measured Service 

 Rapid elasticity coupled with a pay - as - you - go pricing model means that it is important 
for cloud support systems to carefully track resource usage for each application over 
time. As cloud consumers will generally be charged for resources used, there is an 
incentive for consumers to release unneeded resources, promptly to minimize their 
operating expenses. De - growing resource usage has different reliability and availability 
risks than resource growth has; de - growth risks are also considered in Chapter  7 , 
 “ Capacity and Elasticity. ”  

 The foundation of measured service is obviously the usage data itself. Beyond the 
simple risk of data unavailability or loss, there are several measurement reliability and 
integrity risks:

    •      Data Accuracy .      Maximum rate of inaccurate usage data (e.g., maximum defec-
tive records per million or DPM).  

   •      Data Completeness .      Maximum rate of missing or damaged usage records (e.g., 
missing, damaged or corrupted usage records per million ideal records).  

   •      Timestamp Accuracy .      The maximum rate of usage records (e.g., defects per 
million [DPM]) for which timestamp accuracy is incorrect by more than a speci-
fi ed number of milliseconds or seconds.    
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 Service measurements are discussed in Section  8.2.2 ,  “ Service Reliability and Avail-
ability Measurements. ”    

   4.3    IMPACTS OF COMMON CLOUD CHARACTERISTICS 

 This section considers the reliability and availability impacts of six common charac-
teristics of cloud (see Section  1.2 ). 

   4.3.1    Virtualization 

 Virtualization technology decouples application software from the underlying 
hardware, thereby increasing deployment fl exibility and enabling applications work-
loads to be deployed to computing clouds. Reliability risks of virtualization technol-
ogy and virtualized applications are discussed in Chapter  5 ,  “ Reliability Analysis of 
Virtualization. ”  

 Virtualization itself does not impact customers ’  expectations for service reliability 
and service availability, so if an enterprise expected fi ve 9 ’ s service availability from 
the natively deployed application, then they are likely to expect fi ve 9 ’ s when the 
application is deployed as a virtual appliance or on a virtualized platform. Applica-
tion availability is managed by factoring downtime into appropriate categories, assign-
ing downtime budgets by category, and managing each downtime category to meet 
its budget. Traditionally application service downtime is factored into software -
 attributable service downtime and hardware - attributable service downtime. Software 
downtime of virtual applications is discussed in Chapter  5 ,  “ Reliability Analysis of 
Virtualization, ”  and hardware downtime is discussed in Chapter  6 ,  “ Hardware Reli-
ability, Virtualization, and Service Availability. ”  The evolution of downtime budgets as 
traditional applications migrate to the cloud is considered in Section  10.3 ,  “ System 
Downtime Budgets. ”   

   4.3.2    Geographic Distribution 

 Distributing applications to data centers physically close to end users can both reduce 
service latency and improve service reliability and availability by minimizing the IP 
networking equipment and facilities between the serving data center and the end user. 
Geographic distribution also facilitates distributing application functionality across 
several data centers, such as pushing/caching contents in  content distribution network  
( CDN ) elements close to users to reduce transport latency, and thus improve users ’  
quality of experience. 

 Geographic distribution is a necessary, but not suffi cient, condition for geo-
graphic redundancy, and hence for disaster recovery. Chapter  9 ,  “ Geographic Distribu-
tion, Georedundancy, and Disaster Recovery, ”  explains how geographic distribution 
relates to geographic redundancy, and how geographic redundancy supports disaster 
recovery.  



RISKS OF ESSENTIAL CLOUD CHARACTERISTICS 71

   4.3.3    Resilient Computing 

 Mechanisms and architectures that improve the robustness and resiliency of cloud 
computing platforms and the applications hosted on those platforms will improve 
service reliability and availability of cloud - based applications. Resilient and high 
availability computing mechanisms are discussed in Chapter  5 ,  “ Reliability Analysis 
of Virtualization, ”  and in Chapter  11 ,  “ Recommendations for Architecting a Reliable 
System. ”   

   4.3.4    Advanced Security 

 Advanced security is essential in protecting services from denial of service and other 
security attacks that can adversely impact service availability; this is discussed in 
Section  7.8 ,  “ Security and Service Availability. ”   

   4.3.5    Massive Scale 

 Massive scale systems will require a more complete and thorough set of service 
management processes supported by service orchestration and automation to ensure 
the complexity of the large system can be well managed to mitigate risks to service 
reliability and availability. IT Service Management risks are discussed in Section 
 4.5 .  

   4.3.6    Homogeneity 

 Limiting the range of different hardware and software platforms supported to achieve 
homogeneity should reduce the risk of service provider errors and failures because 
common policies and procedures can effectively be deployed in homogeneous environ-
ments. Homogeneity inherently reduces the number of different types of procedures to 
automate and/or that maintenance staff execute, and increase the frequency that a 
smaller set of procedures are executed. As staff gains more experience and expertise 
with that smaller set of products due to familiarity and frequent execution, the probabil-
ity of successful execution should increase and the execution time should decrease. 
Both of these should somewhat decrease overall service downtime. Increased automa-
tion should reduce human involvement — thereby eliminating the risk of human error —
 and maximize consistency and reproducibility; both of these factors should reduce 
failure rates of IT service management actions. Human errors should be less frequent 
in homogeneous environments because staff gain more experience executing policies 
and procedures in a homogeneous environment compared with the alternative of operat-
ing in a less consistent heterogeneous environment. It is possible, however, that some 
customers, particularly large customers, may want custom environments that could 
include custom tools, policies, and procedures. Customization may attenuate some of 
the reliability benefi ts of homogeneity   
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   4.4    RISKS OF SERVICE MODELS 

 Decomposing traditional IS/IT deployment into application consumers and infra-
structure - , platform, or software - as - a - service providers is fundamental to cloud comput-
ing (see Section  1.4 ,  “ Service Models ” ). To methodically characterize the roles and 
responsibilities of both cloud service providers and cloud consumers, we will apply 
the 8i    +    2d model to cloud computing and consider the implications for cloud 
consumers. 

   4.4.1    Traditional Accountability 

 Traditionally,  “ fi ve 9 ’ s ”  claims and expectations consider only product - attributable 
impairments (see Section  3.3.6 ,  “ Outage Attributability ” ) of individual systems (i.e., 
application software running on hardware). This was fair for both system suppliers 
and the suppliers ’  customers operating the system because the supplier took responsibil-
ity for what they directly controlled, and the customer (enterprise) retained respon-
sibility for both customer - attributable and external - attributable (e.g., force majeure) 
outages. This allocation of responsibility is visualized in Figure  4.1  by crudely overlay-
ing TL 9000 outage accountability from Section  3.3.6 ,  “ Outage Attributability, ”  onto 
the 8i    +    2d framework visualized in Figure  3.3  from Section  3.2 ,  “ Eight - Ingredient 
Framework. ”  Suppliers have responsibility for their hardware and software, as well 
as interworking with other networked elements via application protocols. Customers 

     Figure 4.1.     TL 9000 Outage Attributability Overlaid on Augmented 8i    +    2d Framework.  
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retain responsibility for creation, integrity, maintenance, and other aspects of their data. 
Note that power, environment, IP networking, human, and policy ingredients have been 
logically aggregated together as  “ data center, ”  and this captures the common sense 
notion that systems from suppliers are installed in data centers maintained by customers/
enterprises. Force majeure and external - attributable outages are always a risk to data 
centers, and this risk must be managed by the customer/enterprise.    

   4.4.2    Cloud - Based Application Accountability 

 Figure  4.2  visualizes how outage responsibilities map onto the 8i    +    2d cloud frame-
work of Figure  4.1 . The cloud consumer is responsible for the creation and integrity 
of their data and confi guration information, as well as the policies and maintenance 
staff that (remotely) operate, administer, maintain, and provision their application soft-
ware and data. A system integrator or software supplier is responsible for assuring 
correct operation of application software, including interworking with other network 
elements via application protocols. The cloud service provider is responsible for all 
data center resources (environment, power, network connectivity, operational policies, 
and maintenance staff), IP networking infrastructure, as well as hardware resources 
and the supporting platform software. In addition to maintaining confi guration data for 
all virtualized resources and data center facilities, the cloud service provider is also 
responsible for assuring that cloud consumers ’  data written to virtualized storage are 
protected and available on demand. Note that while cloud service providers often 

     Figure 4.2.     Outage Responsibilities Overlaid on Cloud 8i    +    2d Framework.  
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operate multiple geographically redundant data centers, it is the responsibility of the 
cloud consumer to make suitable arrangements to assure that service can be rapidly 
recovered following force majeure or other external event that renders a single data 
center unavailable.     

   4.5     IT  SERVICE MANAGEMENT AND AVAILABILITY RISKS 

 Sophisticated enterprises recognize that while individual components may offer a high 
theoretical availability, the observed service availability in real - world operation rarely 
approaches the theoretically maximum service availability. The FAA explicitly distin-
guishes these notions as inherent availability and operational availability, and defi nes 
them as follows:

    •      Inherent availability   ( A  i ) —  “ the maximum availability theoretically within the 
capabilities of the system or constituent piece.    . . .    Scheduled downtime is not 
included in the Inherent Availability measure. A i  is an inherent design character-
istic of a system that is independent of how the system is actually operated and 
maintained in a real world environment ”   [FAA - HDBK - 006A] .  

   •      Operational availability   ( A  op ) —  “ the availability including all sources of down-
time, both scheduled and unscheduled. A op  is an operational measure for deployed 
systems that is monitored by NAPRS ”   [FAA - HDBK - 006A] .    

 The difference between the inherent availability ( A  i ) and operational availability ( A  op ) 
is largely determined by  IT service management  ( ITSM ). IT service management is 
the implementation and operation of information technology systems to meet the 
needs of the enterprise.   IT service management covers service design, release, deliv-
ery, control, and resolution processes for IS/IT services, and perhaps even more in 
broader defi nitions of the term. There are a number of IT service management 
standards and frameworks, including ISO/IEC 20000,  Control Objectives for Infor-
mation and Related Technology  ( COBIT ), Microsoft ’ s operations framework  [MOF] , 
and the Information Technology Infrastructure Library (often known simply by its 
acronym  “ ITIL ” ). As ISO/IEC 20000 is based on ITIL service management pro-
cesses, the authors will analyze IT service management in the context of the 2011 
edition of ITIL. This section considers how IT service management impacts opera-
tional service availability. 

   4.5.1     ITIL  Overview 

      ITIL factors IT service management into fi ve categories: service strategy, service 
design, service transition, service operation, and continual service improvement as 
shown in Figure  4.3 .   
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 The following sections review each of these fi ve areas and consider the risks to 
service reliability and service availability for successful and unsuccessful service man-
agement actions. A summary of IT service management risks is also given.  

   4.5.2    Service Strategy 

 ITIL Service Strategy    [ITILv3SS]  essentially defi nes a plan for delivering and manag-
ing information services that meet an enterprise ’ s business needs. The service strategy 
includes fi ve processes:

    •      strategy management for IT services;  

   •      service portfolio management;  

   •      fi nancial management of IT services;  

   •      demand management; and  

   •      business relationship management.    

 While these general processes are crucial to business success, for the most part, they 
do not have a direct impact on delivered service reliability or service availability. 
However, specifi c aspects of the service strategy, especially the use of automation, can 
have a large impact on service reliability and service availability. Service automation 
in particular — a major component of  “ service orchestration ”  in the context of cloud 
computing — can improve service reliability by reducing risks associated with complex-
ity and human errors. 

     Figure 4.3.     ITIL Service Management Visualization.  
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 Note that Appendix C of  [ITILv3SS]  considers service strategy and the cloud. 
This appendix highlights four components of cloud architecture that are essential for 
success:

    •      Service Catalog and Portal .      Communicates to customers the cloud services that 
are available for purchase and the service level expectations for each. While the 
service catalog and portal sets expectations for service reliability and service 
availability, it has no direct impact on them.  

   •      Service Governance .      Defi nes and automates the operational policies, standards, 
and practices of the cloud service provider that facilitate but do not directly 
impact service reliability and service availability.  

   •      Service Delivery Management .      Monitors and reports usage by cloud consum-
ers of cloud services. This also covers: service operations processes, capacity 
management, availability management, security management, and business con-
tinuity management. As such, this component does directly impact the service 
reliability and service availability of cloud - based solutions.  

   •      Infrastructure and Service Delivery .      Obviously, the service provider ’ s XaaS 
infrastructure and service delivery mechanisms directly impact the service reli-
ability and service availability experienced by cloud consumers.     

   4.5.3    Service Design 

 Service design strives to create IT systems that achieve the goals of the service strategy 
and require minimal changes after initial deployment. ITIL service design    [ITILv3SD]  
covers the processes of:

    •      design coordination;  

   •      service catalog management;  

   •      service level management;  

   •      availability management;  

   •      capacity management;  

   •      IT service continuity management;  

   •      information security management system; and  

   •      supplier management.    

 Of these activities, service - level management and availability management have direct 
and explicit linkages to the reliability and availability of the offered service. Service -
 level management essentially sets the service level requirements for reliability and 
availability, and availability management ensures the feasibility and likelihood of 
meeting those targets. Chapter  12 ,  “ Design for Reliability of Virtualized Applications, ”  
and Chapter  13 ,  “ Design for Reliability of Cloud Solutions, ”  as well as traditional 
design for reliability works like  [Bauer10] , consider these topics from a reliability 
engineering perspective. 
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 Rapid elasticity is an essential characteristic of cloud computing that enables 
capacity management to follow a very different paradigm; Chapter  7 ,  “ Capacity and 
Elasticity, ”  discusses this topic in detail. Automation of capacity management in the 
context of cloud computing is often called service automation; Chapter  8 ,  “ Service 
Orchestration Analysis, ”  discusses this topic in detail. 

  IT service continuity management  ( ITSCM ) focuses on mitigation of risks and 
recovery of the service following a critical failure or a disaster. ITSCM of critical 
services traditionally focused on geographic redundancy to assure prompt recovery time 
and recovery point objectives could be achieved. With appropriate engineering, geo-
graphic distribution of cloud data centers can be leveraged to both support IT service 
continuity management as well as improve users ’  quality of experience in normal (i.e., 
nondisaster) periods; this topic is considered in detail in Chapter  9 ,  “ Geographic Dis-
tribution, Georedundancy, and Disaster Recovery. ”   

   4.5.4    Service Transition 

 Service transition strives to assure that new service introduction and subsequent changes 
are effi ciently executed with minimal impact to service users. ITIL service transition   
 [ITILv3ST]  covers the processes of:

    •      transition planning and support;  

   •      change management;  

   •      service asset and confi guration management;  

   •      release and deployment management;  

   •      service validation and testing;  

   •      change evaluation; and  

   •      knowledge management.    

 IT service transition focuses on mitigation of risks associated with the introduction of 
new or changed services. All of the processes contribute to this focus through careful 
management of assets, version control, and validation. Of particular importance to 
service reliability and service availability is release and deployment management, 
which focuses on the successful development, testing, and delivery of a new or changed 
service in accordance with customer requirements. Activities, such as software upgrade 
and patch, are facilitated through virtualization and cloud mechanisms, which support 
nonimpact to user service during these activities. Mitigation of risks associated with 
service transition activities is discussed in Section  11.3 ,  “ IT Service Management 
Considerations. ”   

   4.5.5    Service Operation 

 ITIL service operation    [ITILv3SO]  covers the processes of:

    •      event management;  

   •      incident management;  
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   •      request fulfi llment;  

   •      problem management; and  

   •      access management.    

 These service operation processes are covered by fi ve core functions:

    •      service desk;  

   •      technical management;  

   •      IT operations management;  

   •      Application management; and  

   •      monitoring and control.    

 Effi ciency and effectiveness of a provider ’ s service operations have a major impact on 
overall service availability. Event and incident management processes directly impact 
the duration of service disruptions for failures that are not automatically detected and 
recovered properly. Best in class event and incident management processes strive to 
proactively detect events before they cascade into service disruptions and resolve them 
with minimal service disruption. Request fulfi llment ensures that requests for changes 
or for information are handled properly. Problem management processes should ensure 
that in addition to resolving problems promptly, the root cause of the problem is identi-
fi ed and corrected to minimize the risk of reoccurrence. 

 While access management technically grants or denies a user ’ s availability to IS/
IT services or data, each access management error generally affects a very small portion 
of IS/IT users — often just a single user — so those events are not generally classifi ed as 
outages, and thus downtime or unavailability metrics are not impacted. 

 IT service monitoring is crucial to assure that all failures are promptly detected 
and mitigated via event and incident management processes. Operations and application 
management functions must be correctly executed to assure user service is not impacted. 
Properly trained staff that are able to make excellent decisions assessing and managing 
risks to service operation is crucial.  

   4.5.6    Continual Service Improvement 

 ITIL continual service improvement    [ITILv3CSI]  strives to improve service quality and 
effectiveness of IS/IT. ITIL recommends a seven - step continual service process of:

   1.     Defi ne what you  should  measure.  

  2.     Defi ne what you  can  measure.  

  3.     Gather the data.  

  4.     Process the data, including scrubbing for accuracy.  

  5.     Analyze the data to determine if targets were met, understand trends, and rela-
tionships among the data, and propose corrective actions.  
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  6.     Present and use the information and corrective actions.  

  7.     Implement corrective actions and improvements.    

 Continual service improvement also covers regular reporting of key service perfor-
mance indicators to keep leaders aware of observed service quality, reliability, and 
availability.  

   4.5.7     IT  Service Management Summary 

 Figure  4.4  illustrates the IT service management processes and topics that have the 
most impact on service reliability and availability.   

 IT Service Management provides well - defi ned processes to direct all aspects of 
customer service from strategy to deployment onto monitoring and improvement. 
Each process in some way supports and enables a highly reliable service, but the pro-
cesses included in Figure  4.4  have the most direct impact on defi ning and maintain-
ing service to ensure that it meets the customers ’  requirements for availability and 
reliability.  

   4.5.8    Risks of Service Orchestration 

 As defi ned in Section  8.1 ,  “ Service Orchestration Defi nition, ”  service orchestration 
entails the linking together of architecture, tasks, and tools necessary to initiate and 
dynamically manage a service. Service orchestration provides an infrastructure for 
automating the confi guration and management of a cloud - based service that conforms 
to associated operational policies. In the cloud computing environment, this entails not 
only confi guring software to hardware, but also determining effi cient work fl ows, 

     Figure 4.4.     IT Service Management Activities to Minimize Service Availability Risk.  
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adherence to service agreements and standards, billing, and monitoring all in an auto-
mated way. Automation is a benefi t for service orchestration, but it can also introduce 
some risks:

    •      If there is a bug associated with a particular application instance, the automatic 
creation of additional instances of that application may further spread this issue.  

   •      Service orchestration may introduce a level of complexity that makes the system 
more error prone.  

   •      Service orchestration coupled with rapid elasticity may result in the automatic 
allocation of resources that the customer is not prepared to pay for. A more 
manual approach might be requested by some customers.    

 The effectiveness of the service orchestration may be measured based on service avail-
ability, service reliability (e.g., number of defective transactions against the number 
attempted), and service latency. The reliability implications of service orchestration will 
be analyzed in Chapter  8 ,  “ Service Orchestration Analysis. ”   

   4.5.9     IT  Service Management Risks 

 Service management of cloud - based applications is inherently more complex than 
traditional application deployments because the organizational split between the cloud 
consumer and the cloud service provider introduces the risk of confusion over roles 
and responsibilities for aspects of IT service management. Even when roles and respon-
sibilities are clear, the split between consumer and provider introduces one more orga-
nizational boundary, which adds both latency and the risk of errors across the interface. 

 A more subtle service management risk may arise from historic assumptions about 
the reliability and availability requirements for systems that support IT service manage-
ment.  [Oppenheimer]  observed that some enterprises have historically focused on 
improving service availability for end users without bothering to improve the resilience, 
robustness, and redundancy of the systems that support IT service management. This 
strategy was driven by the notion that since end users are powerless to mitigate service 
problems, it was important to the business that end user service be robust and reliable. 
In contrast, IT staff was empowered to work around failures of their support systems, 
so it was less important to make those systems robust and reliable. While this strategy 
may have been successful when IT staff had full visibility, access, and control of their 
traditional systems, fragile support systems may prove too brittle and inadequate for 
more elastic and dynamic cloud deployment models. Thus, enterprises should recon-
sider if their IT service management support systems are reliable and robust enough to 
support the user service availability expectations.   

   4.6    OUTAGE RISKS BY PROCESS AREA 

 To better manage service downtime, it is useful to map the 8i    +    2d ingredients to the 
process or best practice areas that assure proper operation and availability of those 
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ingredients. Figure  4.5  visualizes how four broad categories of process or best practices 
cover the 8i    +    2d ingredients:

    •       Design for reliability best practices  like  [Bauer10]  for software, hardware, and 
application payload ingredients (including software hardware and payload por-
tions of IP networking equipment) assure highly reliable and available operation 
of these ingredients. These best practices, including  “ Design for Reliability of 
Virtualized Applications ”  in Chapter  12 , methodically manage the product -
 attributable service downtime of individual applications.  

   •       Data center infrastructure standards and best practices  like  [Uptime]  and 
 [TIA942]  cover power, environment, and aspects of networking infrastructure. 
Standard data center tiers set expectations for service availability of data center 
power, environment, and networking infrastructure.  

   •       IT service management , like ITIL best practices, COBIT (for Control OBjectives 
for Information and related Technology), and ISO/IEC 20000 families of stan-
dards, covers human, policy, and data ingredients. Specifi cs of the cloud service 
model will determine the exact split of responsibilities for IT service management 
activities and processes between the cloud service provider and the cloud 
consumer.  

   •       Business continuity planning  covers disaster recovery from force majeure and 
external events. While comprehensive IT service management frameworks 
(e.g., ITIL) explicitly reference business continuity planning (e.g., IT service 

     Figure 4.5.     8i    +    2d Attributability by Process or Best Practice Areas.  
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continuity management or ITSCM, in the context of service design  [ITILv3SD] ), 
it is suffi ciently distinct from routine operations that it is generally considered 
separately. Service impact expectations for business continuity plans are rou-
tinely specifi ed as  recovery time objective s ( RTO ) and  recovery point objective s 
( RPO ), which will be described in Section  3.7 ,  “ High Availability and Disaster 
Recovery. ”  Chapter  9 ,  “ Geographic Distribution, Georedundancy, and Disaster 
Recovery, ”  considers the topic of disaster recovery. Specifi cs of the cloud service 
model will determine the exact split of responsibilities for business continuity 
planning activities and processes between the cloud service provider and the 
cloud consumer. Note that it is not customary to include average annualized 
downtime estimates due to force majeure or external events because, thankfully, 
these events are very rare.      

   4.6.1    Validating Outage Attributability 

 To both validate the outage risk by process area factorization and to offer more con-
crete examples of outage causes, this section maps standard  Federal Communications 
Commission  ( FCC ) outage causes against the four cloud - oriented process risk areas. 
Service outages in the real world have a direct or triggering cause, and often have 
one or more contributing causes. Mitigating each of these direct and contributing causes 
is often addressed by at least one of the four general process areas enumerated above. 
This hypothesis is casually validated by considering how a standard set of real - world 
outage causes would nominally be addressed by each of these areas. The U.S. FCC 
mandates usage of a formal  network outage reporting system  ( NORS ) for recording 
severe communication disruption events. The formal outage reports explicitly identify 
the root cause, direct cause, and contributing factors for each outage event; the standard 
set of these causes is given in  [NORS] . One can illustrate and validate the outage 
attributability by process areas by mapping each of these standard outage categories 
into broad process areas. While one can quibble that some items are actually covered 
by multiple process areas (e.g., IT service management considers some business 
continuity planning topics), this exercise does clarify many of the service outage 
risks each process should be mitigating. For simplicity, several NORS categories that 
are not directly applicable to cloud computing (e.g., diversity failures of SS7 links) are 
omitted.

    •      Supplier ’ s design for reliability processes and diligence should mitigate risk of 
the following standard outage causes: 
    �       Design — Software  causes, such as  “  faulty software load , ”   “  inadequate defen-

sive checks , ”  and  “  ineffective fault recovery or reinitialization action . ”   
   �       Hardware failure  causes, such as  “  memory unit failure . ”   
   �       Design — fi rmware  causes, such as  “  ineffective fault recovery or reinitialization 

action  ”  and  “  Insuffi cient software state indications . ”   
   �       Design — hardware  causes, such as  “  inadequate grounding  ”  or  “  poor backplane 

or pin arrangement . ”   
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   �       Procedural — system vendor  causes, such as  “  ad hoc activities, outside scope 
of    method of procedure   (  MOP   ) , ”   “  insuffi cient supervision/control , ”  or  “  insuf-
fi cient training . ”     

   •      Data center infrastructure and processes mitigate the risk of the following outage 
causes: 
    �       Environment (internal)  causes, such as  “  environmental system failure (heat/

humidity) , ”   “  fi re, arcing, smoke damage , ”  or  “  fi re suppression (water, chemi-
cals) damage . ”   

   �       Diversity failure  causes, such as  “  power . ”   
   �       Power failure (commercial and/or backup)  causes, such as  “  generator failure , ”  

 “  extended commercial power failure , ”  or  “  lack of routine maintenance/
testing . ”     

   •      IT service management processes and diligence by both cloud consumer and 
cloud service provider should mitigate risk of the following standard outage 
causes: 
    �       Procedural — service provider or other vendor  causes, such as  “  documentation/

procedures out - of - date, unusable or impractical , ”   “  documentation/procedures 
unavailable/unclear/incomplete , ”   “  inadequate routine maintenance/memory 
back - up , ”   “  insuffi cient supervision/control , ”  or  “  insuffi cient training . ”   

   �       Spare  causes, such as  “  not available  ”  or  “  on hand — failed . ”   
   �       Traffi c/System Overload  causes, such as  “  Inappropriate/insuffi cient Network 

Management control(s ) ”  or  “  Mass calling — focused/diffuse network overload . ”     

   •      Business continuity planning and diligence should mitigate risk of the following 
standard outage causes: 
    �       Environment — external  causes, such as  “  earthquake , ”   “  fi re , ”   “  storm — water/

ice , ”  or  “  storm — wind/trees . ”         

   4.7    FAILURE DETECTION CONSIDERATIONS 

 Figure  4.6  visualizes eight traditional product error vectors from  [Bauer10] . Figure  4.7  
shows the subset of traditional product error vectors that are likely to be primarily the 
responsibility of the IaaS provider, and Figure  4.8  shows the traditional error vectors 
that are likely to be primarily the responsibility of software suppliers or the organization 
responsible for the software, such as the software as a service (SaaS) service provider. 
Note that additional virtualization - related errors will be discussed in Section  12.6 , 
 “ Robustness Testing, ”  and several cloud related errors will be discussed in Section  13.6 , 
 “ Solution Testing and Validation. ”  This section considers responsibility for failure 
detection and mitigation when applications are deployed to a cloud.   

   4.7.1    Hardware Failures 

 The IaaS service provider has primary responsibility for detection and mitigation of 
hardware failures. Chapter  6 ,  “ Hardware Reliability, Virtualization, and Service Avail-
ability, ”  explicitly considers this error vector.  
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     Figure 4.7.     IaaS Provider Responsibilities for Traditional Error Vectors.  
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     Figure 4.6.     Traditional Error Vectors  (from  [Bauer10] ) .  
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   4.7.2    Programming Errors 

 Programming errors in application and platform software should be detected in virtual-
ized environments by the application ’ s high availability infrastructure just as they are 
in native execution environments. Programming errors in host operating system, VM 
monitor, or hypervisor are likely to appear to applications as a catastrophic (virtual 
machine) hardware failure. 

 Application suppliers (and SaaS service providers) have primary responsibility for 
detection and mitigation of application software; responsibility for failures of platform 
software and guest OS software is often responsibility of platform as a service (PaaS) 
suppliers; responsibility for hypervisor failures generally rests with IaaS supplier. 
Chapter  5 ,  “ Reliability Analysis of Virtualization, ”  considers mitigation and detection 
of errors in this category.  

   4.7.3    Data Inconsistency and Errors 

 Data inconsistencies and errors appear and must be detected by application and platform 
software in virtualized environments just as they are in native environments. One 
potential advantage of practical virtualized environments is that they may offer addi-
tional processing and I/O resources so that an application ’ s data audit routines can be 
run more often and/or with more elaborate checking logic, thus reducing the risk that 

     Figure 4.8.     Software Supplier (and SaaS) Responsibilities for Traditional Error Vectors.  
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a data inconsistency or error will be fi rst encountered by production code and thus 
cascade into a software failure. For example, database integrity audit programs could 
be executed in a separate VM instance so that resources consumed for the integrity 
check would have minimal impact on the running application. It is important to clarify 
responsibility for detection and recovery from data - related failures. For example, if a 
fi le system is corrupted, is the fi le system repair the responsibility of the XaaS service 
provider or the cloud consumer?  

   4.7.4    Redundancy Errors 

 Virtualization invariably changes the specifi cs of at least some application redun-
dancy arrangements by mapping some redundancy into virtual machines rather than 
native hardware devices. Virtualization enabled redundancy mechanisms are discussed 
in Section  5.4.2 ,  “ Virtualized Recovery Options. ”  As virtualization can affect operation 
and monitoring of both traditional redundancy arrangements (e.g., active/active and 
active/warm standby) and virtualization - related redundancy arrangements (discussed 
in Section  5.4 ,  “ Recovery Models ” ), one must assure that the high availability mecha-
nism supporting the target application reliably monitors the readiness of all redundant 
instances and promptly detects failed switchovers or other redundancy failures. Thus, 
software suppliers must assure that the application and platform software reliably detect 
the true operational status of both virtualized and native redundant instances.  

   4.7.5    System Power Failures 

 IaaS service providers have primary responsibility for detecting and mitigating power 
failures and impairments.  

   4.7.6    Network Errors 

 Physical and link layer networking issues (e.g., packet collisions, checksum failures, 
and buffer overrun/under run) are likely to be detected by network adapter hardware 
and fi rmware, and thus are likely to be addressed beneath the virtual machine that the 
application software inhabits. Network layer issues (e.g., IP packets out of sequence, 
packet jitter) are likely to be passed straight through to the VM and must be detected 
and mitigated by application and platform software.  

   4.7.7    Application Protocol Errors 

 Application protocol errors must be detected and mitigated by application and plat-
form software in the virtualized environment just as they are in native environments. 
For example, the application software logic that detects and mitigates application pro-
tocol failures like  unexpected message contents or structure  or  unexpected message 
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sequence  should behave identically when executing on both virtualized and native 
deployments.   

   4.8    RISKS OF DEPLOYMENT MODELS 

 Reliability and availability risks are fundamentally the same for private, community, 
public, and hybrid clouds, and thus the same mitigations and metrics are generally 
appropriate although the associated roles and responsibilities will differ. Cloud bursting 
is when a workload is dynamically shifted from one deployment strategy to another, 
such as when migrating some workload from a private or public cloud that is approach-
ing saturation to another provider ’ s public cloud. Cloud bursting has the same primary 
reliability risks as rapid elasticity (reliability and latency of engaging additional service 
capacity), plus additional risks associated with the identifi cation, authentication, autho-
rization, and commercial relationships necessary to rapidly shift workloads between 
distinct enterprises. These additional risks will contribute additional latency to provi-
sioning resources and may cause an individual cloud burst attempt to fail. The risks of 
cloud bursting are considered in Chapter  7 ,  “ Capacity and Elasticity. ”  Cloud bursting 
also has some architectural challenges such as:

    •      The virtualization environments must be the same or it must be possible to 
migrate to the new environment.  

   •      The load balancer (or whichever element is responsible for directing user traffi c) 
must be aware of and able to access the extended cloud environment.  

   •      VM instances must be able to be transferred and instantiated with necessary 
resources in the extended cloud environment.  

   •      If communication is necessary between cloud environments, the networking 
layer must support it.  

   •      Suffi cient security must be set up to protect the application in the extended cloud 
environment.    

 These challenges may make it impractical for most systems to implement cloud 
bursting.  

   4.9    EXPECTATIONS OF  I  AA  S  DATA CENTERS 

 The Open Data Center Alliance  [ODCA]      defi nes four classes of IaaS data centers: 
bronze, silver, gold, and platinum. These classes offer a recognized baseline for IaaS 
performance levels. Table  4.1  from  [ODCA - SUoM]  gives general characteristics of 
each class of service; Table  4.2  characterizes service availability expectations. ODCA 
frames expectations for a variety of data center performance areas, including elasticity 
(discussed in Chapter  7 ,  “ Capacity and Elasticity ” ) and recoverability (discussed in 
Chapter  9 ,  “ Geographic Distribution, Georedundancy, and Disaster Recovery ” ).      
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  TABLE 4.1.     ODCA  ’ s Data Center Classifi cation 

      Bronze    Silver    Gold    Platinum  

        Basic  
   Enterprise 
Equivalent  

   Critical Market 
or Business 

Sector 
Equivalent  

   Military or Safety -
 Critical Equivalent  

  Outline    Representing the 
lower - end 
corporate 
requirement, 
possibly equating 
to a reasonably 
high level for a 
small to medium 
business customer  

  Representing 
a tradeoff 
more toward 
cost than 
service level 
within the 
SLA range  

  Representing a 
preference for 
more cost to 
deliver a 
higher quality 
of service 
within the SLA 
range  

  Representing the 
maximum 
contemplated 
corporate 
requirement, 
stretching toward 
the lower end of 
military or safety -
 critical needs  

  Price levels     €      €   €      €   €   €      €   €   €   €   
  Lowest, 
commodity  

  Premium  

  Measures 
likely to be 
taken  

  Standard out - of -
 the - box 
components  

  Standby or 
reassignable 
elements  

      Full duplication with 
load - balancing or 
failover, no SPoFs  

  Performance 
assurances  

  Component inputs    Component 
outputs  

  Degrees of 
contention 
experienced  

  User applications 
experience  

  Scope of 
assurances  

  Components    Subsystems    Full systems    End - to - end, including 
all dependent 
elements  

  Security 
in - built  

  Basic    Enterprise    Financial    Military  

  Commitment 
measurement 
periods  

  Averaged over 
weeks or months  

  Daily    Hourly    Real time, continuous  

  Source :   Open Data Center Alliance.  ©  2011 Open Data Center Alliance, Inc. All Rights Reserved. 

   SLA, service - level agreement.   
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  TABLE 4.2.     ODCA  ’ s Data Center Service Availability Expectations by Classifi cation 

   SLA Level     Description  

  Bronze    Reasonable efforts to attain 99% availability for the IaaS (up to but 
not including the cloud subscriber ’ s components). Note that the 
service provider cannot be penalized for any failure of OS or app in 
the guest VM, except where the failure is clearly the fault of the 
hypervisor or underlying hardware solution.  

  Silver    Provisions made to attain 99.9% availability, including increased focus 
on preventing impact from contention risks.  

  Gold    Specifi cally demonstrable additional measures needed to achieve and 
sustain 99.9% availability and demonstrating resilience to reasonably 
anticipated fault conditions. Service penalties should apply at this 
level.  

  Platinum    Highest possible focus on uptime to achieve 99.99% availability, with 
the expectation of signifi cantly increased service penalties (beyond 
Gold tier) if not achieved.  

  Source :   Open Data Center Alliance.  ©  2011 Open Data Center Alliance, Inc. All Rights Reserved. 

   SLA, service - level agreement.   
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5

     This chapter gives a qualitative reliability analysis of virtualization technology. It begins 
with a review of reliability analysis techniques, and then considers how these tech-
niques apply to the virtualization techniques reviewed in Chapter  2 ,  “ Virtualization. ”  
There is also an analysis on software failure rates, concluding with a comparison 
between virtualized and traditional, nonvirtualized applications.  

5.1 RELIABILITY ANALYSIS TECHNIQUES 

 This section reviews several standard reliability analysis techniques:

 •      reliability block diagrams;  
 •      single point of failure analysis; and  
 •      failure mode and effects analysis (FMEA).    

5.1.1 Reliability Block Diagrams 

  Reliability block diagram s     ( RBD s) are a simple and powerful tool for visualizing 
redundancy and analyzing reliability. Reliability block diagrams arrange all service 

RELIABILITY ANALYSIS 
OF VIRTUALIZATION 

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.
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critical elements in a series of connected boxes with elements that are redundant shown 
in parallel. Figure  5.1  gives an RBD of a hypothetical system with several elements 
providing critical service: a single critical component A; pairs of components B1, B2 
and C1, C2; and three redundant components D1, D2, and D3.   

 For service to be available across the sample system of Figure  5.1 , there must be 
at least one path through operational ( “ up ” ) components from one side of the RBD to 
the other; Figure  5.2  illustrates one such traversal path. For example, either B1 or B2 
can fail and service remains available. However, if element A, or both B1 and B2, or 
both C1 and C2, or D1, D2, and D3 fail, then service will be unavailable.   

 Individual blocks within RBDs can be aggregated or decomposed to perform the 
appropriate level of analysis. For example, Figure  5.3  gives an RBD of a canonical 
simplex (nonredundant) computer - based system: physical computer hardware runs a 
software platform (e.g., middleware) and operating system (OS) software that hosts a 
software application. Each of these components is illustrated in a separate box, and for 
an application service to be operational and available to users, the hardware, OS, soft-
ware platform, and application must all be operational (aka,  “ up ” ). Conversely, if any 
one of these components is unavailable (aka,  “ down ” ), then service is unavailable.    

     Figure 5.1.     Sample Reliability Block Diagram.  
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     Figure 5.2.     Traversal of Sample Reliability Block Diagram.  
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   5.1.2    Single Point of Failure Analysis 

       Single point of failure   ( SPOF ) is any single component in a system or solution confi gu-
ration that can fail and cause service to become unavailable. In the RBD example of 
Figure  5.1 , module  “ A ”  is a single point of failure. Critical systems must be designed 
to have no single point of failure. Typically, one reviews a proposed design for single 
points of failures, and redesigns any components or facilities that are found to be single 
points of failure. 

 There is a related architectural concept of a  single point of maintenance    or  single 
point of repair  that considers the impact of maintenance or repair actions. A single point 
of maintenance or repair refers to a component that can only be serviced by taking the 
entire system offl ine. For example, a basic RAID system may require the unit to be 
powered off to safely replace a failed hard disk drive, while a more robust RAID con-
fi guration of the system protects against a single hard disk failure from being a single 
point of failure that impacts user service, a simple physical or electrical design makes 
the hard disk drive a single point of maintenance or repair. The notion of  “ hot ”  removal 
and installation of blades, hard disks, and so on, directly mitigates the risk of single 
point of maintenance or repair. Redundant hardware can prevent the initial failure from 
causing a prolonged service outage, but eventually the failed hardware must be repaired 
or replaced to return the system to full operational redundancy. If that maintenance or 
repair operation requires the entire element to be depowered or rebooted, then that 
module represents a single point of maintenance or repair for that element.  

   5.1.3    Failure Mode Effects Analysis 

  Failure mode effects analysis      is a technique for assuring that a design can contain and 
recover failures with acceptable service impact. We review the concepts of failure 
containment and recovery groups as background, and then discuss  FMEA  analysis 
methodology. 

   5.1.3.1    Failure Containment.     Containing the impact of a failure is crucial in 
preventing a cascade of failures that impact more users and functionality. For example, 
modern OSs and processors rigidly separate memory address spaces of different user 

     Figure 5.3.     Nominal System Reliability Block Diagram.  
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processes from each other, thereby enabling individual user processes to experience 
critical failures (e.g., divide - by - zero exceptions, accessing undefi ned memory locations, 
and unaligned memory access) without directly impacting other processes running on 
the same OS instance. Database transactions are a well - known unit of failure contain-
ment; if a transaction fails, then it can be aborted, and any changes executed after the 
formal beginning of that transaction will be rolled back, thereby containing the impact 
of the failure to losing that single transaction. Virtualization provides an additional level 
of rigid failure containment because VM instances are wholly independent of each 
other, and thus can be started, and restarted, restored, or recovered without directly 
impacting any other VM instances hosted on the same or different hardware platform. 
Good hardware designs contain hardware failures to the smallest fi eld replaceable unit. 
For example, failure of a single hardware blade in bladed system architecture should 
have no impact on other blades in the chassis. 

 The ability to rigidly contain failures preventing a failure from cascading into 
further failures is crucial in high availability systems. Virtualization offers rigid failure 
containment of software failures at the level of virtual machine (VM). In the simplest 
scenario, VM containment is equivalent to the containment offered by native server or 
blade instances; however, the hypervisor is able to better manage a multitenant confi gu-
ration by more effectively allocating resources and isolating failures experienced by 
one tenant from the other. Note that application architectures can be tailored to use 
more VM instances than native server instances, and thus offer tighter failure contain-
ment and resource management than with traditional deployment.  

5.1.3.2 Recovery Groups.   After a failure is contained to a particular hardware or 
software module, service must be recovered to a redundant or repaired unit; in the case 
of software failures, service could be recovered to a restarted software instance. Service 
recovery after failure is inherently more complex if any service state is to be retained, 
so special attention should be paid to carefully design and thoroughly test those associ-
ated software modules to ensure they recover rapidly and reliably in a wide variety of 
failure scenarios. 

 Recovery groups are typically arranged into well - known redundancy arrangements 
like N     +     K  load sharing, active/active, or active/standby, so when a critical failure 
occurs service is recovered by shifting traffi c to a redundant instance, such as to the 
failed active unit ’ s mate or distributed across other elements in the load sharing pool. 
The granularity at which service is recovered is the recovery group.  

5.1.3.3 FMEA Methodology.   Failure mode effects analysis considers the impact 
on service of individual component, module, or subsystem failure events. FMEAs are 
generally represented in a tabular form where:

 •      individual components, modules or subsystems are represented by rows;  
 •      primary services offered by the system are represented by columns; and  
 •      individual cells indicate what, if any, impact there is on a particular primary 

service when a particular component, module, or subsystem fails and is recov-
ered. Note that the recovery action (e.g., failing over service to a redundant 
module) could impact users who were not impacted by the original failure.    
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 It is often convenient to add two additional columns to the table:

 •      Nominal time to detect the failure of the individual component, module, or sub-
system; this value is typically represented in seconds.  

 •      Nominal time to complete an automatic switchover or service recovery action 
after detecting failure of the individual component, module, or subsystem.    

 Any cells that have unacceptable failure effects or for which failure detection or failure 
recovery time exceed system requirements can be highlighted; system architects and 
developers should investigate architectural and design changes that can mitigate the 
unacceptable effect or behavior. Table  5.1  gives a sample failure mode effects analysis 
for a virtualized application of Figure  5.1 .      

  TABLE 5.1.    Example Failure Mode Effects Analysis 

   Functional 
Unit

   Redundancy 
Strategy

   Impact 
on New 
Sessions

   Impact 
on Stable 
Sessions

   Impact on 
Transient 
Sessions

   Estimated 
S/O Latency     Notes  

  A    Simplex    LOST    LOST    LOST    Not 
supported

  Impact on sessions 
until  “ A ”  is 
restarted on 
current or new 
server

  B    Active –
 standby  

  LOST    No 
impact

  LOST    10 seconds    Impact on new/
transient sessions 
until failover 
completed; data 
replication
supports
maintaining stable 
sessions across 
failover

  C    Active –
 standby  

  LOST    No 
impact

  LOST    1 second    Impact on new/
transient sessions 
until failover 
completed; data 
replication
supports
maintaining stable 
sessions across 
failover

  D  N     +     K   No 
impact

  No 
impact

  No impact    1 second    Failure of one unit 
entails load 
sharing of traffi c 
across the others 



RELIABILITY ANALYSIS OF VIRTUALIZATION TECHNIQUES 95

   5.2    RELIABILITY ANALYSIS OF VIRTUALIZATION TECHNIQUES 

 The reliability analysis techniques of the previous section are now applied to full vir-
tualization, OS virtualization, and paravirtualization. The RBDs indicate a single appli-
cation in the fi rst three sections but the coresidency use case is considered in Section 
 5.2.4 . 

   5.2.1    Analysis of Full Virtualization 

 Figure  5.4  illustrates how full virtualization   changes the canonical system RBD shown 
in Figure  5.3  by inserting a virtualization hypervisor and Host OS between the OS and 
the underlying hardware. Note that the  “ host ”  OS can be different from the  “ guest ”  OS 
in full virtualization. For the virtualized deployment of this traditional canonical system 
to be available, the hardware,  “ host ”  OS, hypervisor,  “ guest ”  OS, software platform, 
and application must all be operational.   

 The application, with its software platform and OS, comprise a VM. Each VM is 
isolated from the other VMs running on the server and is unaware it is running in a 
virtual environment. As a result, each VM ’ s failures are contained; VMs can fail and 
be recovered independently of other VMs running under the same hypervisor. A VM 
instance can be reset, rebooted, or migrated within its failure recovery group based on 
the nature of the failure. Since the hypervisor itself is required as the hardware interface 
for all of the VMs, it becomes the single point of failure along with the hardware for 
the virtualized system.  

   5.2.2    Analysis of  OS  Virtualization 

 Figure  5.5  illustrates how the canonical system RBD of Figure  5.3  changes when OS 
virtualization   inserts a hypervisor running on a primary  “ host ”  instance of the OS. The 

     Figure 5.4.     Reliability Block Diagram of Full Virtualization.  
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RBDs for full virtualization and OS virtualization are the same; the difference is that 
on full virtualization, the guest OSs can be different from the host OS, while with OS 
virtualization, they must be the same. Note that while both the guest and host OS 
instances must be the same OS and version, the guest OS instance is separate and can 
fail (aka, crash) and be recovered independently of the host — or other guest — OS 
instances.   

 OS virtualization also provides partitioning of the application instances, along with 
their software platform and guest OS, into isolated partitions sometimes referred to as 
virtual environments or containers. This isolation ensures that the failure of one virtual 
environment does not impact another virtual environment sharing the OS virtualization 
hypervisor, and that each virtual environment will be included in a separate recovery 
group than the others.  

   5.2.3    Analysis of Paravirtualization 

 Figure  5.6  illustrates how the canonical RBD changes when paravirtualization   is used. 
Like full virtualization, paravirtualization inserts a hypervisor and host OS between the 
system hardware and the software platform supporting the application to create the 
illusion that the application and software platform have a dedicated instance of system 
hardware. The difference is that the guest OS is modifi ed to include integrated device 
drivers that offer more direct access between the application instance and hardware 
resources since they provide for direct communication without the need for translation. 
As with full virtualization, paravirtualization entails the partitioning of the applications 
into VMs; each VM can run on an OS different from the host OS. As with full virtu-
alization, each VM with paravirtualization is isolated from the other VMs running on 
the server and is unaware it is running in a virtual environment. As a result, each VM ’ s 

     Figure 5.5.     Reliability Block Diagram of OS Virtualization.  
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failures are contained; a single VM can fail independently of other VMs running under 
the hypervisor and recover within its own recovery group.   

 Paravirtualization combines advantages of both full virtualization and OS virtual-
ization. OS virtualization offers direct calls from the applications to the OS without 
translation since the applications all function on the same OS. This is also the main 
disadvantage of OS virtualization, that is, the host and all of the guests must run on the 
same OS and version. Paravirtualization provides more direct access for the applica-
tions to the hardware resources than full virtualization, but not as much as OS virtual-
ization. Paravirtualization thus offers some of the best of both full virtualization and 
OS virtualization, with better performance through more direct access to hardware 
resources and the ability to support VMs on OSs different from that of the host at the 
cost of needing to alter the guest OSs.  

   5.2.4    Analysis of  VM  Coresidency 

 A popular use of virtualization technology is to enable several VM instances to share 
hardware resources, thereby improving hardware utilization and effi ciency. When it 
applies to multiple applications, this is referred to as VM coresidency  , that is, multiple 
VM application instances residing on the same server. This VM coresidency feature is 
leveraged in the popular server consolidation use case. Figure  5.7  illustrates how vir-
tualization enables one to take the applications and software platforms of traditional 
system deployments  “ A ”  and  “ B ”  and make them coresident on a single hardware 
instance via virtualization. Assuming that both applications  “ A ”  and  “ B ”  are required 
to be operational for service to be available, then one can easily see how server con-
solidation replaces excess server hardware from the reliability block diagram with a 
virtualization layer. Assuming that the virtualization layer is more reliable than the 

     Figure 5.6.     Reliability Block Diagram of Paravirtualization.  

OS
Virtualization

Hypervisor

Hardware
Software
Platform Application

Operating
System

Hardware
Software
Platform

Application
�Guest�

Operating
System

Host
Operating

System

•Includes integrated 
device drivers for 

direct access to hw 
resources

•Traditional Configuration

•Virtualized Configuration



98 RELIABILITY ANALYSIS OF VIRTUALIZATION 

hardware that is consolidated, service availability is likely to improve because the 
failure contribution of one hardware platform has been removed from the critical 
service delivery path.   

   5.2.4.1    Failure Containment for Coresident Applications.     Virtualization also 
provides the ability to isolate the two applications so that a failure of one of the appli-
cations does not impact the other. Because of this isolation, the applications still have 
their own recovery group as they did in nonconsolidated deployments; if a software 
failure occurs that triggers the recovery of the VM even to another server, then coresi-
dent VMs should not be impacted. Of course, a catastrophic hardware or hypervisor 
failure will impact all of the coresident VMs; ideally, those affected VM instances will 
be migrated to alternate virtualized servers that have spare capacity so the service 
impact can be minimized. 

 An important characteristic of the different virtualization types is failure contain-
ment, isolating the applications in a virtual environment or VMs so that even though 
the application is sharing a host computer, it is not impacted by failures from another 
application. All three virtualization types provide failure containment for the VMs 
managed by the hypervisor, and allow them to be included in separate recovery groups 
from the other VMs. The hypervisor is a key component responsible for the isolation 
of the VMs, their access to system resources, and may include an extra layer of high 
availability software facilitating the recovery of the VM. It could also be a single point 
of failure for the coresident applications, since it manages the use of most if not all of 
the hardware resources. 

 A failure mode effects analysis of the simplex functional entities included in the 
RBD in Figure  5.7  are included Table  5.2 . Failures experienced by a single VM or its 
components (application, software platform, and guest OS) are isolated to that VM 
instance and can be resolved by rebooting or resetting the failed VM instance. This 

     Figure 5.7.     Reliability Block Diagram of Coresident Application Deployment.  
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should result in recovery of the VM instance or recovery to another instance within its 
failure recovery group when redundancy has been confi gured. Common elements, such 
as the server, hypervisor, and the host OS (if it exists) will have a potential impact on 
all coresident VMs. Failure of the common elements will result in the recovery of those 
elements, as well as the impacted VMs. Critical failures may result in the recovery of 
the VMs onto another hardware platform.     

   5.2.5    Discussion 

 Since the three virtualization types have such similar characteristics from a failure 
containment, failure management, and recovery point of view, a generic RBD, such as 
depicted in Figure  5.8  may be used throughout this book rather than three specifi c ones.     

  TABLE 5.2.    Failure Mode Effect Analysis Figure for Coresident Applications 

   Functional Entity     Impact on App  “ A ”      Impact on App  “ B ”      Recovery Mechanism  

  Hardware    Service impact    Service impact    Restart/recover 
hardware  

  Hypervisor    Service impact    Service impact    Restart/recover 
hypervisor  

  Operating system 
 “ A ”   

  Service impact    No impact    Restart/recover 
virtual machine  “ A ”   

  Software 
platform  “ A ”   

  Service impact    No impact    Restart/recover 
virtual machine  “ A ”   

  Application  “ A ”     Service impact    No impact    Restart/recover 
virtual machine  “ A ”   

  Operating system 
 “ B ”   

  No impact    Service impact    Restart/recover 
virtual machine  “ B ”   

  Software 
platform  “ B ”   

  No impact    Service impact    Restart/recover 
virtual machine  “ B ”   

  Application  “ B ”     No impact    Service impact    Restart/recover 
virtual machine  “ B ”   

     Figure 5.8.     Canonical Virtualization RBD.  
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5.3 SOFTWARE FAILURE RATE ANALYSIS 

 Critical software failure rate is the most infl uential parameter when considering soft-
ware attributed downtime because it drives how often automatic or manual failure 
detection mechanisms and recovery strategies are activated. This section considers 
how the application, software platform and guest OS failure rates change when 
deployed on a hypervisor, as well as considering the software failure rate of the hyper-
visor itself. 

5.3.1 Virtualization and Software Failure Rate 

 There are residual defects in all software that will result in software failures given 
the execution of particular scenarios under certain conditions. While a particular 
piece of application software contains the same residual defects when it is executed 
on native or virtualized platforms, virtualized deployments should offer a far smaller 
range of confi gured operational profi les for the software than native deployments. 
Virtualization decouples application software from specifi cs of the underlying physical 
hardware confi guration by presenting a canonical virtualized hardware image to guest 
OS, platform, and application software, and the virtualization manager carefully 
addresses the particulars of mapping the canonical hardware image presented to guest 
OS, platform, and application software to the actual underlying physical hardware 
resources. Virtualization in general and hypervisors in particular enable applications 
to execute in the same virtualized confi guration regardless of the actual physical 
confi guration of the underlying hardware. Note that virtualization enables software 
to run on hardware that is nominally faster (e.g., higher clock rate) than the native 
hardware, so while differences in execution timing that trigger software errors are 
theoretically possible, the virtualization manager should minimize this risk. Thus, 
virtualization technology can mask hardware confi guration related residual defects 
in application and platform software from being activated because virtualization tech-
nology assures that application and platform software always sees the same canonical 
hardware image. The software supplier ’ s system test efforts can thoroughly test against 
that canonical hardware image, and the virtualization supplier assures that all deploy-
ments of their virtualization technology should present that same canonical hardware 
image to guest OS, application, and platform software, regardless of the specifi cs of 
the underlying hardware confi guration. Overall, virtualized application deployments 
may experience somewhat lower critical application software failure rates than tra-
ditional deployments. 

 At the time of this writing the authors are unaware of published data comparing 
the software failure rates of application or platform software on native (nonvirtualized) 
confi gurations with execution on virtualized platforms. However, anecdotal data from 
experts with signifi cant fi eld deployment of both virtualized and non - virtualized 
instances of their application software indicates that the critical software failure rate 
of virtualized deployment appears somewhat lower than for native (nonvirtualized) 
deployments.
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5.3.2 Hypervisor Failure Rate 

 Hypervisors are complex system software modules that are confronted with diverse 
requests from VM instances and real - time events from underlying hardware elements. 
The latest release plus stability patch loads of massively deployed hypervisors that 
support diverse applications on a wide variety of hardware platforms should have few 
residual defects provided:

 •      The target application and platform software are architecturally similar to other 
applications that are broadly and successfully deployed on the hypervisor.  

 •      The guest OS is supported by the hypervisor and has demonstrated reliable opera-
tion across a very large set of deployments.    

 Note that the OS changes required to support paravirtualization increase the risk that 
modifi ed OS software may have a slightly higher critical failure rate than unmod-
ifi ed guest OSs. This incremental risk is likely to be modest in early releases of 
paravirtualized OSs, and will likely become negligible as specifi c paravirtualized imple-
mentations mature.  

5.3.3 Miscellaneous Software Risks of Virtualization and Cloud 

 In some cases, the actual application and/or platform software or confi guration may 
be different on virtualized deployment compared with native. For example, software 
licensing may be implemented differently in virtualized deployment compared with 
native deployment, and hence the fundamental software failure rate may be different 
between the confi gurations. As virtualization platforms strive to faithfully emulate 
native hardware, any variations should be small and thus the extent of different code —
 and hence risk of different residual defects — is likely to be small. 

 In contrast to virtualization - related application software differences that are likely 
to be minimal compared with native, changes to take advantage of cloud related features 
like rapid elasticity (aka,  “ autoscaling ” ) are likely to require at least a moderate amount 
of moderately complex software, and thus increase the risk of software failure; this risk 
is considered in detail in Chapter  7 ,  “ Capacity and Elasticity. ”    

5.4 RECOVERY MODELS 

 After a critical failure is detected, a recovery action must be automatically or manually 
executed to recover user service. This section reviews both traditional recovery options 
and virtualized recovery options, and considers the implications. 

5.4.1 Traditional Recovery Options 

 Traditional systems can support four general recovery models:

   1.     Hardware Repair .      Hardware failures of nonredundant systems render service 
unavailable until hardware can be repaired and software restarted. The  mean 
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time to repair  ( MTTR ) hardware is primarily a function of the operational poli-
cies of the enterprise, such as: whether reserve fi eld replaceable hardware is 
maintained on - site; whether trained repair staff is available; and what support 
arrangements are in place with hardware suppliers. Typical hardware repair 
times range from hours to days.  

  2.     Software Restart .      Software failures of nonredundant systems are often recov-
ered by either restarting a process, application software, or restarting the entire 
OS and platform software. Typical software restart times are measured in 
minutes.

  3.     Switchover to Redundant Active Element .      Systems that are deployed with 
online and  “ active ”  redundant elements (e.g., load sharing or active/active con-
fi gurations) can recover user service by switching (or redirecting) users to an 
online and active redundant element. Service switchover to an online and active 
redundant element will have some latency but should be faster than software 
restart and far faster than hardware repair.  

  4.     Switchover to Redundant Standby Element .      Some systems are deployed with 
redundant units that are not online and actively serving users; these redun-
dant units are said to be in  “ standby ”  because some actions are necessary to 
bring them to full readiness to serve users. It inevitably takes time to bring the 
standby element to active status, plus latency to switchover service from the 
failed active element to the newly active element.  “ Hot ”  standby elements will 
require time to promote the standby software element to active;  “ warm ”  standby 
elements will also require time to start up the application itself; and  “ cold ”  
standby elements will require even more time to startup the underlying 
hardware platform itself. Thus, switchover to  “ hot ”  standby elements is often 
faster than software restart; switchover to  “ warm ”  standby elements is often 
comparable with software restart time; switchover to  “ cold ”  standby elements 
is signifi cantly slower than software restart, but it is much faster than hardware 
repair.    

 Figure  5.9  organizes these traditional recovery options on a quasi - logarithmic timeline 
by service recovery latency, from switchover to redundant active and hot standby ele-
ments nominally taking seconds (depending on system architecture and confi guration), 
to hardware repair taking hours or days (depending on sparing strategy and support 
agreements with hardware suppliers).    

5.4.2 Virtualized Recovery Options 

 Virtualization enables several new redundancy options that are not possible with 
traditional deployments; these options generally supplement traditional recovery strate-
gies, like process restart. Virtualized recovery options are best understood in the 
context of the DTMF ’ s virtual system state model, which was described in Section  2.4 , 
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 “ Virtual Machine Lifecycle, ”  and illustrated in Figure  2.6 . These virtualized recovery 
options are:

    •      VM Can Be Moved (Offl ine) and Restarted on Different Hardware .      Restarting a 
VM on a different available server can recover service far faster than the time it 
takes to repair failed hardware. This recovery may be manual or automatic. The 
likely benefi t of this strategy is discussed in Section  6.9 ,  “ MTTR of Virtualized 
Hardware. ”   

   •      Virtual System State  “ Active ”  Redundancy .      A traditional  “ active ”  redundant 
element can be mapped into a VM so that both the primary and redundant active 
elements are in separate VMs. This is illustrated in Figure  5.10 . Multiple  “ active ”  
VMs can be confi gured in standard arrangements, like N    +    K load sharing, 
active/standby, and so on. Since it is using the traditional redundancy mecha-
nisms, the resulting system should have essentially the same service availability 
characteristics as native deployments. Note that the multiple  “ active ”  VMs 
should be deployed on different virtualized servers to prevent underlying hard-
ware from being a single point of failure.    

   •      VM Instances Can Be Reset or Rebooted .      Virtualization adds the ability to either 
reset or reboot a VM instance. Figure  5.11  illustrates VM reboot entailing the 
reboot or recycle of the VM while maintaining their allocated resources. 
Figure  5.12  illustrates VM reset in which the VM transitions from deactivate to 
activate without a corresponding deallocation and reallocation of resources.    

     Figure 5.9.     Latency of Traditional Recovery Options.  
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     Figure 5.10.     Traditional Active - Standby Redundancy via Active VM Virtualization.  
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     Figure 5.11.     Reboot of a Virtual Machine.  
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   •      Paused VM Instances Can Be Activated .      Redundant VM instances can be allo-
cated, application software made ready, and then the VM instance can be paused; 
these paused VM instances can be activated and made available instantly to 
recover service when necessary. As shown in Figure  5.13 , paused VM instances 
are sleeping  “ lightly ”  so there is additional service recovery latency compared 
with active VM redundancy, but fewer platform (e.g., CPU) resources are con-
sumed to maintain paused VM ’ s nearly online than for online active VM instances. 
Note that paused redundant VM instances should be hosted on different virtual-
ized server platforms from the active instances to prevent the virtualized server 
platform from becoming a single point of failure.    

   •      Suspended or Snapshot VM Instances Can Be Activated .      Redundant VM 
instances can be allocated, application software made ready, and then the VM 
can be suspended or snapshot. Redundancy can be provided by suspended or 
snapshot VM instances that can be activated when required. As shown in Figure 
 5.14 , suspended VM instances are sleeping  “ deeply ”  so there is more incremental 
recovery latency compared with paused VM redundancy, and signifi cantly more 
latency compared with active VM redundancy, however even fewer virtualized 
platform resources are consumed to support suspended VM redundancy. Note 
that suspended redundant VM instances should be hosted on different virtualized 
server platforms from the active instances to prevent the virtualized server plat-
form from becoming a single point of failure.      

     Figure 5.12.     Reset of a Virtual Machine.  
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     Figure 5.13.     Redundancy via Paused VM Virtualization.  
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     Figure 5.14.     Redundancy via Suspended VM Virtualization.  
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 When a paused or suspended VM is activated, the activated VM instance resumes 
with the same system state that it had at the instant it was paused or suspended. This 
system state is inevitably different from the state of the VM instance that later crashed, 
and thus system state must be refreshed, recovered, or rebuilt by either the activated 
VM instance, or the service clients, or by both VM instance and clients. While some 
state recovery or rebuilding may be required with either traditional or active VM redun-
dancy, the fact that those redundant instances are nominally executing offers the pos-
sibility for those redundant instances to proactively retrieve or recover fresher service 
status.  

   5.4.3    Discussion 

 Figure  5.15  overlays the nominal recovery latency of virtualized recovery options to 
the right of the traditional recovery options from Figure  5.9 . Although this is intended 
as a qualitative visualization rather than a quantitative analysis, virtualized recovery 
options do offer somewhat different recovery latencies than what is typically offered 
by traditional recovery options.   

 Note that virtualized redundancy may introduce an implicit single point of failure 
risk not found in traditional deployments if redundant VM instances are served by the 
same hypervisor instance. Virtualization implicitly breaks the linkage between VM 
instances and the hardware that supports them, and thus by default, redundant VM 
instances for a particular application might be mapped to a single physical virtualized 
server, thereby making that physical server a single point of failure for that particular 
application at that particular time. It is essential to ensure that redundant VM instances 
are not hosted on the same hypervisor or physical server. This can be done through 
affi nity rules as discussed in Section  11.1 ,  “ Architecting for Virtualization and Cloud. ”    

     Figure 5.15.     Nominal Recovery Latency of Virtualized and Traditional Options.  
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5.5 APPLICATION ARCHITECTURE STRATEGIES 

 There are several common high level architectural patterns that are used in some tra-
ditional environments but have special meaning when applied to virtualized and cloud -
 based applications. This section reviews the following common patterns and considers 
the reliability characteristics of each:

 •      on - demand single - user model;  
 •      single - user daemon model;  
 •      multiuser server model; and  
 •      consolidated server model.    

5.5.1 On-Demand Single -User Model 

 The simplest and most common architectural pattern is the on - demand single - user 
model in which an application instance is spawned exclusively for the use of that single 
user. Once spawned on user request, the application instance runs until the user explic-
itly terminates (e.g., closes) the application instance. Most applications running on 
 personal computer s ( PC s) and Smartphones follow this pattern, such as browsers, word 
processors, games, and so on. Desktop as a service follows this architectural pattern. 
A virtualized desktop application instance is spawned on user request and remains 
operational until the user terminates the instance. 

 In the single - user model, the extent of all failures is limited to the individual user 
who requested the application, and thus a single failure should never impact more than 
a single user, meaning that there is no notion of partial capacity outages. Each individual 
application instance should be independent, that is, a failure of one single user ’ s appli-
cation should not impact service offered by another user application instance. 

 Because the application is explicitly started and stopped on user request, an appli-
cation instance is likely to be offl ine for the majority of any weekly, monthly, or other 
measurement period. Thus, traditional service availability metrics (e.g., Availability    
=    Uptime/[Uptime    +    Downtime]) are not generally useful because they do not ade-
quately account for offl ine time. Instead, accessibility and retainability metrics should 
be used to characterize application availability. For an on - demand single user applica-
tion, accessibility is the probability that a user ’ s request to launch the application will 
successfully create an operational application instance within a maximum acceptable 
time (e.g., seconds), and retainability is the probability that an application instance will 
remain operational until the user explicitly terminates the instance. Accessibility impair-
ments are generally either transient, meaning that a second (or third) attempt to spawn 
the application will succeed, or persist meaning that the application will not spawn 
correctly until the root cause of the failure has been corrected. While a statistical mea-
surement that considers the probability of transient accessibility failures is interesting, 
there is little point in considering the accessibility when the application experiences a 
persistent failure because accessibility will be nil until the root cause of the failure has 
been corrected. Operationally, retainability captures the probability that the application 
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will not crash during a session, and this is likely to be a key service metric for on -
 demand single users.  

5.5.2 Single-User Daemon Model 

 This application pattern assigns a persistent VM instance to a single object or logical 
user, and that persistent application instance is expected to be continuously available. 
For example, if control software for a wireless base station is virtualized and moved 
into the cloud (thereby reducing the hardware resources that are required to be deployed 
to remote, unstaffed outdoor locations), then the cloud - based control function for each 
individual base station may become a single - user daemon application. One VM instance 
is uniquely associated with a particular physical object (a wireless base station in this 
example); the number of VM instances grows and shrinks with the number of objects 
of interest. When one VM instance fails, a single object is impacted, and the VM 
instance should be automatically recovered as quickly as possible. Availability is a 
primary service metric for single - user daemon deployments. It is easily computed by 
comparing the cumulative object down - minutes in the measurement period across the 
population of VMs to the total number of minutes in the measurement period multiplied 
by the number of VMs. Service reliability and service latency are also useful metrics. 
Service accessibility and service retainability are not particularly interesting.  

5.5.3 Multiuser Server Model 

 Multiuser server is the canonical architecture model for traditional application servers. 
Each application server instance can handle a variable but fi nite workload of work and/
or set of active users. Traditional application instances have a fi xed maximum engi-
neered capacity, but the cloud ’ s rapid elasticity characteristic means that applications 
are expected to grow horizontally, vertically, and/or out as load increases. As load 
shrinks, multiuser server applications are expected to gracefully release unneeded 
resources.

 Service reliability, service latency, service accessibility, and service retainability 
are good metrics for multi user server. As explained in Section  13.7.1 ,  “ Cloud Service 
Measurements, ”  service availability is sometimes an awkward metric for cloud - based 
multi - user server applications because it is often hard (or impossible) to know the true 
extent of service impact — as opposed to duration of service impact — because the 
number of impacted application users varies across time.  

5.5.4 Consolidated Server Model 

 One of the most common use cases of virtualization is the consolidated server model 
in which multiple applications or application instances share the same physical server. 
The applications are referred to as coresident applications and are discussed in Section 
 5.2.4 ,  “ Analysis of VM Coresidency. ”  

 The following fi gure indicates how multiple applications each on its own hardware 
component can become coresident through virtualization: 
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 With virtualization (as depicted in Figure  5.16 ), server consolidation is supported 
by creating a VM for each application, including its OS. Each VM will act like a sepa-
rate computer. The hypervisor manages the complexity of the coresident applications 
by monitoring the Guest OSs and determining how the resources are allocated to the 
VMs. There are no changes needed to the Guest OSs. The hypervisor will provide all 
of the hardware interfaces for the VMs.   

 Since virtualization supports the containment of failures to the individual VMs, if 
a failure occurs on one VM, the other VMs residing on the same server will not be 
impacted. However, failures associated with the hardware or virtualization platform 
will likely impact all VMs on that server. 

 Traditional service availability calculations are still relevant. Product availability 
calculations will be based on the VM instances that comprise the product and do not 
then include other coresident VMs. Service reliability, service latency, service acces-
sibility, and service retainability are good metrics for the consolidated server model.   

   5.6    AVAILABILITY MODELING OF VIRTUALIZED 
RECOVERY OPTIONS 

 At the highest level, systems are deployed either:

    •       Simplex  (or standalone) with no redundant instances allocated or confi gured prior 
to failure.  

   •       Redundant  with suffi cient resources pre - allocated to promptly recover service 
following failure.    

     Figure 5.16.     Server Consolidation Using Virtualization.  
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 Mathematical modeling is commonly used to estimate the feasible and likely avail-
ability of system architectures. This section considers how service availability of both 
simplex and redundant system confi gurations is likely to be impacted by the use of 
virtualization. 

   5.6.1    Availability of Virtualized Simplex Architecture 

   Conventional (vs. highly available) systems are deployed simplex, meaning that a 
single nonredundant operational unit is available to provide each critical function sup-
porting a service. A single, simplex unit has two well - known operational states, shown 
in Figure  5.17 :

   1.      Up , or working, in which the system is known to be operational.  

  2.      Down , or failed, in which the system is known to be nonoperational, and pre-
sumably repair or replacement is planned.      

 As explained in Section  3.3 ,  “ Service Availability, ”  service availability is uptime 
divided by uptime plus downtime (Availability    =    Uptime/[Uptime    +    Downtime]), so 
availability of simplex systems can be improved in two general ways:

   1.     reducing failure rate; and  

  2.     shortening recovery time.     

   5.6.2    Availability of Virtualized Redundant Architecture 

   Highly available systems are designed to automatically detect, isolate, and recover from 
any single failure. To achieve the fastest possible recovery, service is often restored 
onto redundant modules that are either active or in standby and ready to rapidly recover 
service from a failed module. In some cases, the entire element may be duplicated, such 
as having two identical jet engines on an airplane. High availability systems are built 
by architecting redundant arrangements of all critical modules so that no single unit 
failure will necessarily produce a service outage. 

     Figure 5.17.     Simplifi ed Simplex State Diagram.  
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 Fundamentally, redundant pairs of components can either share the load across 
both elements (called  “ active – active ” ) or have one unit actively serving load while the 
redundant unit waits in standby (called  “ active – standby ” ). In both of these cases, failure 
of a unit actively serving load (i.e.,  “ active ”  unit in  “ active – standby ”  arrangements, or 
either unit in  “ active – active ”  arrangements) will impact service availability at least 
momentarily. The service impact can be simply modeled by considering fi ve factors 
shown in Figure  5.18 : critical failure rate, failure coverage, failure detection latency, 
switchover latency, and switchover success probability. The following sections consider 
how virtualization impacts each of these characteristics, and then discusses the overall 
implications    

   5.6.3    Critical Failure Rate 

 Critical failure rate   is the rate of service - impacting failure events. As discussed in 
Section  5.3 ,  “ Software Failure, ”  we assume that the critical failure rate of the host OS 
and application and platform software is roughly the same for virtualized and native 
deployments. Virtualization introduces a hypervisor software, and perhaps a host OS, 
that is not present in native deployments; this complex software will inevitably con-
tribute some failures, but the maturity and massive deployment of this software suggests 
that this incremental software failure rate attributable to the hypervisor and host OS 
should be signifi cantly less than from the application software. Chapter  6 ,  “ Hardware 
Reliability, Virtualization, and Service Availability, ”  considers hardware reliability in 
detail and observes that hardware failure rates are likely to be equivalent for both tra-
ditional and virtualized application deployments.  

     Figure 5.18.     Downtime Drivers for Redundancy Pairs.  
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5.6.4 Failure Coverage 

 Failure coverage   is the probability that the system will rapidly detect and correctly 
isolate a critical failure to the appropriate recoverable module. Failure coverage is 
driven by the effi cacy of failure detection, which is detailed in Section  3.6 ,  “ Redun-
dancy and High Availability. ”  Software failure coverage for application software, soft-
ware platform, and guest OS should be the same in native and virtualized deployment. 
Hardware coverage is primarily the responsibility of the  “ guest ”  OS and the application 
platform in native deployments, and of the host OS and hypervisor in virtualized 
deployments. Mature and high - quality OS, platform, and hypervisor software should 
achieve comparable levels of hardware failure coverage. 

 Rapid and reliable detection of failures is the fi rst step in the activation of 
high availability mechanisms. Software failures of guest OS, platform, or application 
software in a virtualized deployment should be detectable via the same mechanisms 
used for native deployments; however, there may be an increased latency in fault detec-
tion and recovery based on resource sharing effi cacy. While the hypervisor might 
explicitly see software - triggered processor exceptions like divide by zero events, these 
exceptions should be caught and addressed by the guest OS, platform, or application 
software, so there should be no material difference in the effi cacy of software failure 
detection.

5.6.5 Failure Detection Latency 

 Failure detection latency   is the time it nominally takes the system to automatically 
detect and correctly isolate a critical failure. Nominal failure detection latency is often 
related to the failure detection strategy and mechanism. Some failures will be detected 
synchronously and automatically, such as when the OS raises a processor exception for 
access to an illegal memory address or throws a signal on death of child process. Other 
failures are detected asynchronously, such as during periodic integrity scans of data 
structures, like shared memory. Failure detection latency is infl uenced by confi gured 
parameters, like heartbeat time outs, maximum retry counts, frequency of integrity 
audits, and so on. Assuming that similar or identical detection - related settings are con-
fi gured on virtualized deployments as on native deployments, failure detection latency 
should be similar for both.  

5.6.6 Switchover Latency 

 Switchover latency   is the time it takes for the system to recover service onto the redun-
dant unit and is driven by the redundancy strategy used to mitigate the failure. Strategies 
where the redundant unit is active naturally have shorter switchover latencies because 
the redundant unit need not take time to bring itself to full operational readiness. Hot 
standby has shorter switchover latency than warm standby; warm standby has shorter 
switchover latency than cold standby. Additional latency might be consumed if it is 
necessary to activate a paused or suspended VM instance, or if VM instances must be 
created and initialized to complete the recovery.  
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5.6.7 Switchover Success Probability 

 Switchover success probability   is the probability that an automatic switchover will 
successfully restore service in the nominal automatic switchover latency. Note that in 
fi eld deployments (and hopefully in lab testing), automatic switchovers are initiated 
following a critical failure that has driven part of the system into an ill - defi ned or 
undefi ned state. Thus, automatic switchover must be fast and reliable even when it is 
recovering service that may have been left in a messy state. Switchover success prob-
ability is infl uenced by the architecture, implementation, and testing of the redundancy 
strategy and recovery model. Activating paused or suspended VM instances increases 
the risk of switchover failing by adding a level of complexity to the action.  

5.6.8 Modeling and “Fast Failure ”

 Common software engineering guidance is to  “ fail fast, ”      meaning that it is often better 
to initiate automatic recovery actions when one is fairly sure something has failed (e.g., 
 “ the preponderance of evidence ” ) rather than waiting longer until one is absolutely sure 
(e.g.,  “ beyond a shadow of doubt ” ). After all, a false positive (triggering recovery when 
system had not actually failed) is generally preferable to a false negative (silent or 
sleeping failure in which the system is unavailable but no action recovery action is 
taken because there is no indication there is a failure). In fact, the bulk of predicted 
downtime comes from these false negative situations, since the failure is not recognized, 

  TABLE 5.3.    Comparison of Nominal Software Availability Parameters 

   Parameter  

   How Does Value Nominally 
Compare for Virtualized 

and Native Deployments?     Comments  

  Software failure 
rate

  Same to slightly better    Virtualization should assure a narrower 
operational profi le for production 
software, thereby reducing the risk of 
residual defects 

  Software failure 
coverage

  Same    Same failure detection mechanisms are 
used in both native and virtualized 
environments.

  Failure detection 
latency

  Same    Same failure detection mechanisms are 
used in both native and virtualized 
environments.

  Switchover 
latency

  Different    Switchover latency depends on 
characteristics of selected traditional or 
virtualized recovery strategy.  

  Switchover 
success
probability

  Different    Switchover success probability depends 
on characteristics of selected traditional 
or virtualized recovery strategy.  
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and thus downtime — and user dissatisfaction — accrues until extraordinary actions (e.g., 
angry calls from end users) alert the maintenance engineers to the failure so recovery 
actions can be initiated. 

 This common - sense advice is modeled via the combination of failure detection 
latency and failure coverage that together represent the portion of failures that are suc-
cessfully detected within the nominal detection latency. While it is infeasible to detect 
100% of all failures in 0 milliseconds, the  “ fail fast ”  guidance reminds engineers to 
strive for that goal.  

5.6.9 Comparison of Native and Virtualized Deployments 

 Table  5.3  gives a side - by - side comparison of how key reliability parameters change 
when application software is deployed on a virtualized platform compared with a native 
deployment. Software failure rate should be no worse for the virtualized platform, and 
may be slightly better. Software failure detection coverage and failure detection latency 
should be essentially the same for both deployment scenarios because the same mecha-
nisms are used in both confi gurations. Switchover latency and switchover success 
probability are where availability predictions may differ because different virtual-
ized and native recovery strategies can have signifi cantly different performance 
characteristics.   

 Thus, virtualization permits new cost - effective redundancy options that enable 
applications to achieve service availability of traditional architecture and deployment 
options.     
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     This chapter assesses how hardware reliability considerations change for applications 
deployed on a virtualized platform compared with the same application natively 
deployed on hardware (i.e., no hypervisor). The chapter begins by reviewing hardware 
downtime expectations and the basics of hardware failures. The chapter then considers 
the impact of virtualization, especially the server consolidation use case, on hardware 
failure rates. We then consider limitations on containment and the risk of a cascade 
of hardware failures in virtualized confi gurations. Next, a review of the fundamental 
recovery strategies that can be used to mitigate hardware failure events is presented. 
The chapter concludes with a discussion summarizing how hardware failures of virtual-
ized platforms impact service availability.  

6.1 HARDWARE DOWNTIME EXPECTATIONS 

 Traditionally, service availability expectations of applications (e.g.,  “ fi ve 9 ’ s ” ) took into 
account downtime attributed to hardware, software and procedural (a.k.a., human) 
failures. While virtualization decouples application software from the underlying hard-
ware, it does not eliminate the hardware attributed downtime; hardware still fails, and 

6
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automatic or manual actions must be taken to recover service following failure. To 
achieve a hardware downtime target, the hardware failure rate must be suffi ciently low, 
and the probability of rapid failure detection and successful service recovery must be 
suffi ciently high so that the long - term, annualized, prorated service downtime across a 
population of system attributed to hardware does not exceed the target value. As 
explained in Chapter  5 ,  “ Reliability Analysis of Virtualization, ”  mathematical modeling 
combines quantitative estimates of key parameters to estimate the feasible and likely 
service downtime.  

6.2 HARDWARE FAILURES 

 Hardware       is susceptible to a variety of failure modes, including:

 •      Random failures from manufacturing defects, such as poor solder joints;  
 •      Time -  and temperature - dependent (aka, wear out) failures, such as electro migra-

tion that dissolves metal connections into surrounding silicon or dielectric break-
down of gate oxide, or which causes the breakdown or loss of physical properties 
over time or use. 

 •      Corrosion from gases like H 2 S and H 2 SO 4 .  
 •      Hydrophilic dust that accumulates on hardware components and assemblies, 

absorbs water and electrically shorts pins.  
 •      Soft (i.e., nonpersistent) bit errors from cosmic rays or alpha particles.  
 •      Electrical or thermal overstress.  
 •      Damage during shipping.    

 Reliability qualifi cation, electrical and thermal derating of components, robust design -
 for - manufacturing guidelines, highly accelerated life or design environmental stress 
testing, diligent factory testing, and other techniques should minimize the rate of hard-
ware faults throughout the hardware ’ s designed service life. Nevertheless, hardware 
failures will occur, and thus systems must rapidly detect and isolate hardware failures 
so that system software can activate appropriate recovery actions. 

 Practical hardware error scenarios to consider are:

 •      Processor Failure .      Complex and highly integrated devices like microprocessors, 
digital signal processors, network processors, fi eld programmable gate arrays, 
and so on are critical to hardware functionality and are often more susceptible 
to wear out due to environmental - related effects. For example, weak thermal 
design and elevated ambient temperatures can cause a high - performance proces-
sor to run with excessive junction temperatures, thus accelerating time -  and 
temperature - dependent failure modes, which lead to premature failure.  

 •      Disk Failure .      Hard disk drives are built around high - performance spinning plat-
ters and moving magnetic heads. Over time moving parts (e.g., lubricated bear-
ings) will wear and eventually fail. Although hard disks may have low random 
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failure rates during their designed service life, their service lifetime is often 
shorter than the designed lifetime of the system electronics, and thus hard disks 
may fail and require replacement before the system ’ s electronics has reached the 
end of its useful service life.  

 •      Power Converter Failure .      Board - mounted power modules are used to convert 
voltages provided on the system ’ s backplane to the voltages required by devices 
on the board itself. As these compact devices inherently dissipate high power 
and run hot, they tend to have appreciable hardware failure rates; failure of a 
power converter impacts power delivery and thus renders impacted hardware 
inoperable.

 •      Clock Failure .      Oscillators drive the clocks that are the heartbeat of digital 
systems. Clock failure will impact (and likely disable) the circuitry served by the 
clock.

 •      Clock Jitter .      In addition to hard (persistent) clock failures, the clock signal pro-
duced by an oscillator can jitter or drift. Clocks tend to drift as they age for a 
variety of reasons, including mechanical changes to crystal connections or move-
ment of debris onto crystal. This jitter or drift can cause circuitry served by one 
oscillator to lose synchronization with circuitry served by another oscillator, thus 
causing timing or communications problems between the circuits. 

 •      Switching/Ethernet Failure .      These devices enable IP traffi c to enter and leave 
the hardware unit, and thus are critical.  

 •      Memory Device Failure .      Memory devices are typically built with the smallest 
supported manufacturing line geometries to achieve the highest storage densities. 
In addition, many systems deploy large numbers of memory devices to support 
large and complex system software. Dynamic RAM is susceptible to soft bit 
errors; FLASH memory devices wear out with high write voltages, and over long 
time periods can lose data.  

 •      Parallel or Serial Bus Failure .      High - speed parallel and serial busses are very 
sensitive to electrical factors like capacitance and are vulnerable to crosstalk.  

 •      Transient Failure or Signal Integrity Issue .      Weak electrical design or circuit 
layout can lead to stray transient signals, crosstalk, and other impairments of 
electrical signals. As these issues are transient rather than persistent, they are 
often diffi cult to debug.  

 •      Application - Specifi c Component Failure .      Application - specifi c components like 
optical or radio frequency devices may be more failure prone because of small 
device geometries, high power densities, and newness of technology or manu-
facturing process. Components like fans, aluminum electrolytic capacitors, and 
batteries are also subject to wear out.    

 All of these fundamental error scenarios are applicable to hardware regardless of 
whether applications are executing natively on the hardware or if a hypervisor is vir-
tualizing the application ’ s access to the hardware. Thus, the key hardware downtime 
questions to consider are:
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   1.     Does virtualization impact the rate of hardware errors/failures?  

  2.     Does virtualization impact the latency or effectiveness of hardware failure 
detection?

  3.     Does virtualization impact containment of hardware failures?  

  4.     Does virtualization impact the latency and effectiveness of service recovery 
from hardware failures?  

  5.     Can virtualization itself mitigate the impact of hardware failures?    

 These questions are addressed in the remainder of this chapter.  

6.3 HARDWARE FAILURE RATE 

 Hardware failure intensities, or rates, follow the so - called  “ bathtub ”  curve, which fea-
tures three phases:

 •       infant mortality phase  when weak units fail or due to manufacturing defects;  
 •       useful service life phase  when random hardware failures occur at a fairly constant 

rate that is nominally below the predicted hardware failure rate; and  
 •       wear - out phase  in which failure rates increase until all units in the population 

eventually fail. 

 Given this  “ bathtub ”  behavior, the hardware failure rate questions are:

   1.     Are virtualization and cloud operational characteristics likely to shorten the 
useful service life time of hardware elements and cause wear out failures to 
begin prematurely?  

  2.     Are virtualization and cloud - related factors likely to increase the random hard-
ware failure rate during the useful service life of hardware elements?    

 These two questions are visualized in Figure  6.1 .   
 Failures are primarily driven by thermal, voltage, and current stress, as well as 

mechanical vibration. For example, components that run hotter (e.g., semiconductor 
devices with higher junction temperatures) tend to wear out faster than devices operated 
at lower junction temperatures. Hardware failure rates for virtualized and cloud deploy-
ments may be somewhat higher, and useful service life somewhat shorter than for 
traditional, native deployments because of increased stress on hardware components 
due to:

   1.     Increased Hardware Utilization Reduces the Time Components Engage 
Power Management Mechanisms to Reduce Thermal Stresses .      Server consoli-
dation and increased hardware resource utilization are primary motivations for 
deploying virtualization, and increased utilization can both increase the duty 
cycle of hardware components and reduce the opportunities to engage power 
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management technologies that can reduce electrical and thermal stress on com-
ponents. For example, some modern processors include advanced power man-
agement that slows clock speeds to reduce power consumption — and heat 
generation, hence thermal stress — when the processor is lightly loaded. While 
traditional servers are often very lightly loaded so that power management 
mechanisms can engage to reduce thermal stress on components, server con-
solidation and cloud deployments are likely to keep systems at much higher 
workloads to minimize capital expense and operating expense, thereby making 
it less likely that power management will activate; thus devices are more likely 
to endure higher thermal stress. Therefore, higher hardware resource utilization 
via server consolidation may both increase the hardware failure rate during the 
useful life period, as well as accelerate the onset of the wear - out phase, which 
reduces the useful service life of hardware elements.  

  2.     Increased Thermal Stress Due to Elevated Ambient Temperatures in Data 
Centers .      To reduce operating expense for power, data center operators —
 including cloud service providers — may increase the ambient temperature in 
their data centers, which reduces their cooling load and hence power consump-
tion. Higher ambient temperatures increase thermal stress on hardware compo-
nents, regardless of whether they are virtualized or traditional systems.  

  3.     Reduced Derating Rules and Design Margins by Hardware Suppliers to Reduce 
Costs .      Virtualization ’ s ability to decouple software from the underlying hard-
ware combined with the massive scale and homogeneity are common charac-
teristics that tempt many traditional and cloud computing data center owners 
to deploy less expensive commodity hardware. Performance can sometimes 
be boosted (or component costs reduced) by reducing design margins, such 
as operating components closer to or at their maximum rated values for 

     Figure 6.1.     Hardware Failure Rate Questions.  

Time

Ha
rd

w
ar

e 
Fa

ilu
re

 R
at

e

Useful Service Life Phase
Infant Mortality 

Phase Wear Out Phase

Predicted
Hardware

Failure Rate

Will random 
hardware  failure 

rate increase?

Will useful 
service life
decrease?



HARDWARE FAILURE DETECTION 121

temperature, voltage, and current. Commodity hardware suppliers may adopt 
less conservative derating and design rules, driving components closer to their 
design limits to reduce component costs and/or to boost performance, and 
thereby increasing stress on components.  

  4.     Increased Duty Cycle on Hard Disk Drives and Other Components .      Server 
consolidation in particular and cloud computing in general strive to increase 
hardware utilization rates by squeezing the maximum value out of the capital 
investment in hardware resources. Increased duty cycle can accelerate aging of 
hardware components like hard disk drives. Higher usage of hard disk drives 
can increase vibration and hence mechanical stress.    

 Interestingly, a study by Microsoft of hardware reliability in their cloud computing data 
centers  [Vishwanath]  reported the surprising observation that  “  the age of the server, the 
confi guration of the server, the location of the server within a rack [owing to temperature/
humidity gradient within rack we might have expected different failure characteristics], 
workload run on the machine, none of these were found to be a signifi cant indicator of 
failures . ”  Thus, cloud deployment might not impact hardware failure rates as much as 
one might expect, but further research is necessary.  

6.4 HARDWARE FAILURE DETECTION 

 Hardware failures are detected either synchronously when the resource is accessed 
during normal operation (e.g., hardware component returns an error code or raises an 
error interrupt) or asynchronously during execution of a periodic hardware audit routine. 
Since the hypervisor and host operating system (OS) (if present) should have access to 
the same hardware visibility mechanisms and essentially the same software drivers as 
the guest OS, hardware error and failure detection by the virtualized platform should 
theoretically be comparably effective to native detection by the native OS in nonvirtual-
ized system confi gurations. 

 Theoretically, virtualized platforms might have more effective hardware failure 
detection capabilities because a hardware failure can be detected when executing any 
one particular virtual machine (VM) instance running on the physical hardware, and 
thus the hardware failure may be known to the virtualization platform before other VMs 
are exposed to the hardware failure, thereby creating opportunities for proactive hard-
ware failure detection. The practical question then becomes: if the guest OS, platform 
or application software running in a VM instance detects a hardware failure, then is 
there a mechanism to signal the hypervisor of the hardware failure so the hypervisor 
can initiate failure mitigation actions? 

 Note that since virtualization introduces an additional layer of platform software 
(i.e., the hypervisor), real - time notifi cation of hardware failure may be slightly slower 
than in native confi gurations, especially if multiple VM instances are affected and need 
to be alerted.  
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6.5 HARDWARE FAILURE CONTAINMENT 

 Good hardware design assures that hardware failure of one fi eld replaceable unit should 
not cause hardware failure of another hardware unit. For example, the failure of a 
processor or electronic component on one rack - mounted server or compute blade 
should not cascade to cause adjacent or nonadjacent server or blade hardware to fail. 
However, the fundamental nature of the server consolidation use case means that by 
default, a single hardware failure will be presented to every VM instance that runs on 
the hardware until the hardware failure is repaired. Thus, although good hardware 
design assures that the hardware failure will not cascade to other hardware elements, 
virtualization inherently presents the risk that a hardware failure will be impressed upon 
all active VM instances associated with the failed hardware until the hardware failure 
is mitigated and eventually repaired. Note that this is also an issue with nonvirtualized 
multitenancy architectures.  

6.6 HARDWARE FAILURE MITIGATION 

 Hardware failures are traditionally mitigated by either switching service from the failed 
hardware resource to a redundant hardware resource or by replacing or repairing the 
failed hardware and restarting the software. To maximize service availability a redun-
dant application instance will be online on a redundant hardware resource and will 
be ready to serve users immediately (e.g., active/active or active/hot standby), but other 
traditional (e.g., active/warm standby and active/cold standby) and virtualization -
 related redundancy arrangements (discussed in Section  5.4 ,  “ Recovery Models ” ) are 
possible.

 To mitigate further service impact due to the hardware failure, once the virtualiza-
tion platform/hypervisor detects the underlying hardware failure, it should stop accept-
ing requests to create new VM instances on the failed hardware. Fundamentally, 
preexisting VM instances associated with hardware that is believed to have failed but 
which have not yet experienced the failure can be addressed via one of the following 
strategies:

 •       Virtualized platform mitigates hardware failure.  It is theoretically possible for 
the hypervisor, host OS, or other components supporting VM instances (e.g., 
RAID) to detect and mitigate some hardware failures, thus masking the underly-
ing hardware failure from the VM instances. For example, it is possible to imple-
ment LAN bonding across a pair of physical NICs in the host OS so that the 
failure of an individual NIC need not be exposed to VM instances across the 
virtualized NIC interface. This is discussed further in Section  6.7 ,  “ Mitigating 
Hardware Failures via Virtualization. ”   

 •       VM instances run to the point of failure  (typically the default behavior). The 
hardware failure is implicitly or explicitly presented directly to running VM 
instances where the guest OS, platform, and application software is fully exposed 
to the hardware failure. At some point, the VM instance software will probably 
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experience the hardware failure, and service will be impacted. After the VM 
instance fails, the virtualization platform should start a new VM instance on fully 
operational hardware.  

 •       Hypervisor stops vm instances to (implicitly) activate application - level high 
availability mechanisms.  If the hypervisor detects the hardware failure or is noti-
fi ed of the hardware failure by a VM through an API, then it can decide not to 
risk running the VM instances to the point of failure. Instead, the hypervisor can 
stop (e.g., pause) VM instances tied to impacted hardware, thereby mimicking a 
catastrophic software failure. This action should cause each application ’ s HA 
mechanism (if implemented) to activate and rapidly recover application service 
to a redundant application VM instance.  

 •       Hypervisor stops VM instances and activates virtualization platform/hypervisor 
high availability mechanisms . If the hypervisor detects the hardware failure, then 
it can elect not to risk running the VM instances to the point of failure, and 
destroy the VM instances associated with the impacted hardware, create new VM 
instances on fully operational hardware, and boot the applications into the new 
VM instances.  

 •       Hypervisor live (online) migrates VM instances  to other virtualized platform 
hardware instances. For each VM instance, if the hypervisor (1) detects the 
hardware failure, (2) deems that a VM instance has not been compromised by 
the failure event, and (3) the hardware is suffi ciently operational, then the hyper-
visor can theoretically attempt live migration of the VM instance to fully opera-
tional hardware. This technique presents four fundamental risks: 
   1.      Availability of hypervisor may be compromised . The hardware failure may 

have compromised the hypervisor ’ s state and/or its ability to correctly execute 
any recovery actions.  

  2.      VM instance may have already been compromised , so migration risks pro-
longing the period of service impact since cascaded software failures will 
be separately detected, isolated, and recovered, inevitably extending the 
period of service impact. In addition to the service disruption period experi-
enced during live migration, the compromised VM instance image will 
likely eventually run to failure on the other hypervisor. Thus, it would have 
been easier and faster to restart the application instance promptly once the 
hardware is operational rather than migrating the damaged software and 
then having to restart the application once the failure has occurred after the 
migration.

  3.      Live migration may be so slow that application - level HA mechanisms activate , 
and thus the migrated VM instance will end up fi ghting with the redundant 
application instance(s) that are attempting to take over the service for the 
impacted VM instance. Competing application instances increase the risk of 
slower or unsuccessful service recovery.  

  4.      Live migration of VM instance may be unsuccessful , and thus the opportunity 
costs of time and resources of the attempted live migration are wasted. The 
virtualized platform/hypervisor will still have to create a new VM instance 
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on fully operational hardware, and application - level HA mechanisms will 
activate, if available.      

 Thus, live migration is not generally a feasible option to mitigate hardware failure.  

   6.7    MITIGATING HARDWARE FAILURES VIA VIRTUALIZATION 

 The virtualization layer of software (the hypervisor plus the host OS, if used) decouples 
the VM instance from the physical hardware; this section considers how this layer of 
software can mitigate the impact of hardware failures on VM instances. The virtualiza-
tion hypervisor exposes virtual CPU, virtual memory, virtual storage, and virtual 
 network interface card s ( NIC s) to guest OS, software platform, and application instances. 
One could even draw an application - centric RBD that explicitly includes these virtual-
ized devices, as in Figure  6.2 .   

 Note that the virtualized application, platform, and guest OS software, and enter-
prise IS/IT may have a completely different perspective of virtualized devices because 
device and performance monitoring, redundancy, and high availability mechanisms can 
be hidden beneath the virtualized device interface that is exposed to guest OSs. For 
example, one can easily imagine how a virtualization platform would be confi gured to 
map virtualized storage operations onto a high availability RAID confi guration to offer 
applications higher availability storage than they might expect from traditional deploy-
ments. The specifi c management of CPU, memory, storage, and network resources is 
detailed in the next sections. 

   6.7.1    Virtual  CPU  

 A virtual CPU represents the abstraction of the available physical CPUs or processor 
cores. VM instances are confi gured with one or more virtual CPUs. The hypervisor is 

     Figure 6.2.     Application Reliability Block Diagram with Virtual Devices.  
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responsible for managing the allocation of the physical processing core resources to 
virtual CPUs to meet the needs of all of the VM instances within its control. The benefi t 
of virtual CPU is the ability to share and more fully utilize the physical CPU resources 
by allocating them to multiple VMs based on their requirements. Figure  6.3  depicts the 
assignment of one or more virtual CPUs to each VM instance and the hypervisor in 
turn mapping the virtual CPUs to physical cores.   

 Virtual CPUs could theoretically be used by the hypervisor to mitigate the impact 
of a single physical CPU failure if it is able to detect a failure of a physical CPU, 
quarantine the failed physical CPU, reallocate physical CPU resources from the other 
nonimpacted physical CPUs to the affected virtual CPUs, and restart the VMs. Since 
the VMs are unaware of the physical CPU resources, the hypervisor could be used to 
provide a quicker recovery of the impacted VM ’ s. The following risks exist when 
attempting to mitigate the impact of a single physical CPU failure:

   1.     The CPU failure may have compromised the hypervisor, host OS, or VM 
instance, so it is no longer capable of executing properly, and thus must be 
restarted.  

  2.     Sometimes, it is not possible to recover a single physical CPU; all of the physi-
cal CPUs on the server may have to be recovered as well. In this case, all 
impacted VMs will have to be migrated to another server before the recovery 
is attempted.  

  3.     Failure of a physical CPU could escalate into a more serious OS problem that 
cannot be resolved by just quarantining the CPU.  

  4.     The remaining nonfailed physical CPUs may not have enough resources to 
allocate to the VMs.     

   6.7.2    Virtual Memory 

 Virtual memory management by the hypervisor provides a means of effi ciently allocat-
ing and deallocating memory to the VMs in a way that masks the fact that they are 

     Figure 6.3.     Virtual CPU.  
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sharing physical memory. This maximizes the utilization of the memory and helps to 
ensure that each VM has enough memory to meet its needs yet not interfere with 
memory access by another VM. 

 The hypervisor could use various techniques for virtual memory management, such 
as memory compression and swapping memory to disk, to avoid shortages, thus miti-
gating failures due to memory shortage. In the case of memory failures, the hypervisor 
could block out the failed memory sectors and remap memory allocation around those 
sectors. VM instances that are directly impacted by memory failure events (e.g., their 
active memory image is directly impacted by a hardware failure) must be recovered 
via high availability mechanisms.  

6.7.3 Virtual Storage 

 Virtual storage abstracts the logical storage from physical storage. The virtualized 
storage may be local to the processing resources (e.g., collocated on the processing 
blade or in the rack mounted server) or may be networked such as via a  storage area 
network  ( SAN ) or  network - attached storage  ( NAS ). Storage virtualization can be clas-
sifi ed into two general types:

 •       Block virtualization  can be managed at the server level, storage device level, or 
network level. At the server level, a local volume manager can intercept all 
attempts to access the disk and provide the proper mapping to the physical 
resources. At the storage device level, a software controller (such as used by 
RAID mechanisms) manages access and replication across the disk arrays. At 
the network level, the SAN provides the mapping between the applications ’  
storage requests and the storage controllers managing the physical resources. The 
 Internet Small Computer System Interface  ( iSCSI ) standard supports the trans-
port of data across the IP network. Network File System protocol supports access 
to fi les on storage devices across the network.  

 •       File virtualization  provides a mapping of access requests to the actual directory 
and fi le level in order to mask the physical resources from the applications. This 
provides more fl exibility for the storage and management of the fi les. Logical 
storage can be abstracted from those physical storage pools.    

 Storage virtualization offers a means of moving or redirecting fi le access to a different 
device due to a failure or exhaustion of existing resources with no user impact. Multiple 
layers of virtualization may be supported. Mapping of virtual to physical resources can 
be implemented using mapping tables (sometimes referred to as meta - data) or more 
dynamically via algorithms that calculate the location. Providing multiple paths to the 
storage resources with failover capabilities can be confi gured to provide additional 
robustness if one of the paths is unavailable. 

 Readers will be familiar with the well - known ability of properly confi gured 
RAID confi gurations to successfully detect and mitigate hard disk failures. Mapping 
virtualized storage onto high availability RAID storage can mask hard disk failures 
from virtualized applications. Failure containment depends upon the type of underlying 
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storage mechanisms that are used and the confi guration of the paths to the storage, but 
storage virtualization can provide robust access to the data across failures of individual 
devices or migration to different storage devices. For example, Amazon Web Services 
reports that their fault tolerant  Elastic Block Store  ( EBS ) reduces the 4% annual failure 
rate of the commodity hard disk drives that underlie EBS to a 0.1 – 0.5% annual failure 
rate observed by EBS users  [AWSFT] .   

6.8 VIRTUALIZED NETWORKS 

 Network virtualization entails a combination of hardware and software network 
resources and network functionality providing a single, software - based administrative 
entity, that is, a virtual network. Networking is virtualized at several levels:

 •      virtual network interface cards  
 •      virtual local area networks;  
 •      virtual IP addresses; and  
 •      virtual private networks.    

 Each of these is considered separately. 

6.8.1 Virtual Network Interface Cards 

   A network interface card (NIC) is a hardware component that connects the host com-
puter to the external network. A virtual NIC provides an abstraction of that physical 
component to a user residing on the host (i.e., guest OS) by mapping to a physical NIC 
or to a virtual network. In the case of a virtual network, the network may be contained 
within the server such as between the coresident VMs. In the case of an internal virtual-
ized network a  virtual network interface card  ( VNIC ) is a type of interface managed 
by the hypervisor to provide communication between the VMs within its control. VMs 
on the same host can share resources and exchange data using the VNIC and virtual 
switch without needing to use the external network. 

 A server can have multiple physical NICs. Each physical NIC can be partitioned 
into several virtual NICs. The virtual NICs can then be assigned to the VMs residing 
on the server. Figure  6.4  indicates the fl ow of packets from an external LAN to the 
appropriate VM by way of the physical NIC, hypervisor, to the confi gured VNIC on 
that VM. VMs communicate internally (within the server) and externally via the virtual 
NICs. In this way, the hypervisor takes care of managing the network I/O activities for 
their VMs. To improve service availability, VMs can be confi gured to multiple physical 
NIC ’ s via their Virtual NICs.   

 Failures associated with a particular physical NIC can be mitigated using bonding 
(sometimes referred to as NIC teaming) to aggregate links associated with multiple 
physical NICs and mapping this bonded interface to a virtual NIC. If there is a failure 
of one of the physical NICs traffi c to and from the VMs will be moved to the other 
physical NIC. Risks associated with this bonding mechanism include:
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   1.     The virtualization platform must support this bonding mechanism, as well as 
mechanisms to detect network interface failures and failover/failback to another 
network connection within its aggregated set. Proper confi guration is required 
for the bonding of the physical NICs and the mapping to the Virtual NICs 
confi gured to the VMs.  

  2.     If the physical NICs are attached to the same physical networking IC, a failure 
of the IC will represent a single point of failure and impact both NICs.  

  3.     The host OS is often bypassed for performance reasons so bonding may not 
occur.     

   6.8.2    Virtual Local Area Networks 

    Virtual local area network s ( VLAN s) provide a means of grouping together a collection 
of nodes into a single broadcast domain regardless of whether they are in the same 
physical location. LANs are thus confi gured with software rather than with physical 
cables. One of the purposes of VLANs is to provide network separation (e.g., separation 
of network management traffi c from user traffi c). Even if multiple VLANs share an 
Ethernet switch, they cannot communicate with each other directly on that switch; a 
router would be required for communication between the VLANs. A VNIC can only 
be associated with a single VLAN. Multiple VLANs can be instantiated to provide 
network robustness. Each VLAN can be confi gured to a different physical switch. Each 
physical NIC can be connected to multiple physical switches using separate ports. The 
physical NICs can then be connected to a virtual switch for communication with the 
VMs. Virtual LANs are not specifi c to virtualized environments, and are included here 
for completeness, but will not be analyzed further in this book.  

     Figure 6.4.     Virtual NIC.  
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6.8.3 Virtual  IP Addresses 

 A  virtual IP address    ( VIP ) is an IP address that is not associated with a particular physi-
cal network interface. It can be mapped to physical network interfaces on multiple 
servers or associated with multiple domain names. Many redundancy mechanisms make 
use of VIP addresses so that interfaces to a particular server or component only have 
to know one IP address. In an active/standby redundancy situation, the active compo-
nent assumes the virtual IP address so that all traffi c directed to that VIP is managed 
by the active component. If the active component fails, then the standby component 
will assume the virtual IP address as part of its activation procedure and will then 
receive all of the traffi c directed to that VIP. Virtual IP addresses are mentioned here 
for completeness since they provide a means to mitigate the impact of a server failure 
by supporting the activation of a redundant mate without interfacing components 
having to keep track of that change. However, since VIPs are a commonly used mecha-
nism implemented on nonvirtualized platforms as well as virtualized platforms, they 
will not be analyzed further in this book.  

6.8.4 Virtual Private Networks 

 The main purpose of a  virtual private network    ( VPN ) is to provide a secure, reliable 
connection through encryption to a private local area network even via a remote public 
network. VPNs were created to save costs by remotely connecting a private Intranet 
by eliminating the need to lease physical facilities. VPNs are not particular to cloud -
 based solutions and are thus outside the scope of this book.   

6.9 MTTR OF VIRTUALIZED HARDWARE 

     While highly available systems can mitigate hardware failures by switching service to 
a redundant hardware unit, hardware failures of simplex systems render service unavail-
able until the underlying hardware can be repaired. Hardware  mean time to repair  
( MTTR ) estimates the time required to troubleshoot the hardware failure, complete the 
hardware repair, and return the system instance to normal operation. For simplex (non-
redundant) systems, MTTR is the same as the  mean time to restore service  ( MTTRS ); 
for systems with redundancy, the MTTRS is far shorter than the MTTR, an underlying 
hardware failure. 

 Since virtualization decouples application software from the underlying hard-
ware, hardware failures of virtualized platforms can effectively be mitigated by 
promptly recovering application software to another hypervisor. This enables MTTRS 
for hardware failures for even simplex (nonredundant) systems to be decoupled from 
physical MTTR provided another server is available to support the application. Equa-
tion  6.1  (repeat of Equation  3.4 , for convenience) gives the simple linkage between 
failure rate (the mathematical reciprocal of MTBF), repair time (MTTR), and service 
availability. 
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  Availability

MTBF

MTBF MTTR
=

+
.

   Equation 6.1.   Availability as a Function of MTBF/MTTR          

 Table  6.1  solves this equation for hardware for a canonical hardware MTBF of 100,000 
hours and a range of MTTR values from 6 minutes to 2 days; results are expressed 
both as an availability percentage as well as annualized downtime minutes. Note that 
this estimate considers only hardware - attributed failures covered by the 100,000 hour 
MTBF estimate; estimating system downtime would require one to consider software 
attributed failures and downtime as well.   

 Table  6.1  shows that with the assumed hardware MTBF and an aggressive native 
hardware repair time assumption of 4 hours, over the long term, the system would 
accrue 21 annualized minutes of hardware - attributed service downtime; less aggressive 
hardware repair time assumptions would accrue more downtime. Assuming reserve 
virtualized resources are available (i.e., online or near line) and appropriate operational 
policies are in place, it might be reasonable to assume that the virtualization platform 
and/or data center staff could restart an application on an alternate hypervisor following 
hardware failure in minutes. If the hardware failure rate is constant at 100,000 hour 
MTBF, then a 30 - minute (0.5 - hour) MTTR yields less than 3 minutes of annualized 
hardware - attributable downtime compared with more than 20 minutes of annualized 
downtime for 4 hour MTTR values. Therefore, when robust data center operational 
policies are coupled with virtualization, the hardware attributed service downtime of 
simplex applications can be dramatically reduced. If software is recovered by activating 
snapshots of VM instances of partially or fully booted applications, then software 
recovery time (and presumably hardware recovery time, as well) can be reduced com-
pared with native deployment, further boosting service availability of simplex system 
confi gurations.  

  TABLE 6.1.    Example of Hardware Availability as a Function of  MTTR / MTTRS  

   Predicted Hardware Availability as a Function of MTTR/MTTRS  

   Hardware MTBF (Hours)    =    100,000  

   MTTR/MTTRS 
(Hours)  

   MTTR/MTTRS 
(Minutes)     Availability (%)  

   Annualized Down 
Minutes  

  0.1    6    99.9999    0.5  
  0.25    15    99.9998    1.3  
  0.5    30    99.9995    2.6  
  1    60    99.9990    5.3  
  2    120    99.9980    10.5  
  4    240    99.9960    21.0  
  8    480    99.9920    42.1  

  24    1440    99.9760    126.2  
  48    2880    99.9520    252.3  
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6.10 DISCUSSION

 Although the server consolidation and cloud use cases of virtualization may increase 
hardware failure rates somewhat compared with traditional hardware use scenarios, 
virtualization can be used to mitigate some of the impact of inevitable hardware failures. 
Virtualization also offers the potential of drastically reducing the effective hardware 
MTTR for standalone systems to dramatically reduce the hardware attributed downtime 
of simplex (nonredundant) applications. If the hardware failure is not explicitly detected 
and/or mitigated by the host OS, hypervisor, or guest OS, then the application software 
and/or platform must be prepared to detect and recover from uncovered hardware 
failure.    
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     Rapid elasticity is an essential characteristic of cloud computing that is radically dif-
ferent from both traditional deployment models and from redundancy. Redundancy is 
designed to rapidly provide resources to recover the prefailure service capacity, and 
redundancy is typically expected to recover the impacted service load in seconds or 
minutes. Elasticity is designed to increase (or decrease) the capacity available to serve 
offered load, and elasticity is typically expected to alter capacity in hours, rather than 
weeks or months for traditional deployments. 

 This chapter begins by reviewing system load basics, overload, and traditional 
capacity planning, and then discusses how rapid elasticity in cloud computing changes 
traditional capacity planning assumptions. Capacity - related service risks, as well as 
security risks, are discussed.  

   7.1    SYSTEM LOAD BASICS 

 Many applications have usage patterns that vary based on hour of the day, day of the 
week, and time of year. Figure  7.1  illustrates the day/night usage pattern of a sample 
application with most usage during business and evening hours, and light usage when 
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most people are sleeping. Many applications show day of the week patterns, such as 
heavier usage on either weekdays or weekends. Some applications exhibit other sea-
sonality patterns, such as retailing applications experiencing heavy volumes before 
Christmas, and fi nancial applications experiencing peak usage when quarterly and 
annual fi nancial results are prepared. For traditional applications to meet these expected 
peak loads, the enterprise would have to purchase suffi cient resource to serve that 
projected peak load, as well as some reserve capacity to mitigate failures that might 
occur during peak usage periods. When offered load is below the peak engineered load, 
the excess resource capacity (beyond necessary reserve online capacity) is unused and 
hence wasted.   

 Deeper examination of the Figure  7.1  example reveals insights into how resources 
are actually used. There is a constant base processing load to support application moni-
toring, management, visibility, and controllability. The resource utilization to serve user 
traffi c is highly variable, with minimal traffi c when most people are sleeping and peak 
at the end of the business day. The fi gure clearly shows how the system explicitly 
maintains reserve (or redundant) capacity to rapidly recover user service on failure of 
a component actively serving users. Note that suffi cient reserve capacity is maintained 
to mitigate the failure of a component serving baseload even when offered user work-
load is very light, such as in the middle of the night. The fi gure also clearly shows that 
capacity not required for base processing, user workload, or reserve capacity is wasted 
in this traditional confi guration. Statically sizing resource capacity to serve the peak 
load in the early evening means that signifi cant resource capacity is unused (i.e., 
wasted) by this application in the middle of the night. 

 Server consolidation with complementary applications is one way to increase 
resource utilization. For example, one could imagine running batch jobs — like process-
ing usage records to generate bills for customers — on the platform from midnight to 6 
a.m. local time to utilize some of the resource capacity that would otherwise be wasted. 
The resource pooling essential characteristic of cloud computing, coupled with virtu-
alization, can enable this intelligent resource sharing. 

     Figure 7.1.     Sample Application Resource Utilization by Time of Day.  
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   7.1.1    Extraordinary Event Considerations 

 The offered service load on some applications is highly correlated with natural disasters, 
concert ticket sales, reality show voting, or some hard - to - predict events of regional, 
national, or commercial signifi cance. For example, within minutes of an earthquake or 
terrorist attack, there is likely to be a spike in traffi c load both related to emergency 
response by governmental and to other organizations involved or impacted by the event. 
As news of the event reaches the general population, then there may be a traffi c spike 
as citizens seek to assure that their family and friends are ok and learn more about the 
event or as emergency responders send updates on their progress. The 1989 Loma Prieta 
earthquake  [LomaPrieta]  was unexpectedly broadcast live to a national audience watch-
ing game 3 of baseball ’ s 1989 World Series, and this prompted many to call family and 
friends in the San Francisco Bay Area. Figure  7.2  gives an example of a traffi c spike 
due to an extraordinary event. One can see normal daily and weekly traffi c patterns 
with an extraordinary event causing traffi c to spike far above normal traffi c volumes. 
Obviously, enterprises strive to have their applications always deliver acceptable service 
quality and reliability to all users, even during periods of unusually high demand.    

   7.1.2    Slashdot Effect 

 The Slashdot effect    [Slashdot]  occurs when a larger website creates a link to a smaller 
website that produces a huge boost in traffi c to the smaller website. For example, 
moments after a popular website showcases a little known website, the highlighted 
website might observe a huge spike in traffi c; Figure  7.3  illustrates a moderate example 

     Figure 7.2.     Example of Extraordinary Event Traffi c Spike.  
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     Figure 7.3.     The Slashdot Effect: Traffi c Load Over Time (in Hours). 

  Source :   Wikipedia.org, at  http://en.wikipedia.org/wiki/File:SlashdotEffectGraph.svg .  
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of the Slashdot effect. Slashdot effect traffi c is hard to predict in advance because the 
effect is fundamentally driven by actions of popular websites controlled by others, and 
the reactions of users to those actions. Traditional capacity planning strategies do not 
generally address Slashdot effect events well because it is diffi cult to predict both the 
maximum offered load during the Slashdot event and the timing of that event.     

   7.2    OVERLOAD, SERVICE RELIABILITY, AND SERVICE AVAILABILITY 

 Applications ultimately depend on suffi cient physical processing, storage, networking 
and other resources being promptly available to serve the offered load. If suffi cient 
resources are not available to meet the offered load, then either load is shed gracefully 
or service performance (latency) and ultimately reliability and service availability can 
be impacted. There are three canonical offered load operating regions, as shown in 
Figure  7.4 :

    •       Offered load is at or below confi gured capacity , so the system operates normally, 
and all requests should be served with acceptable service reliability and service 
latency.  

   •       Offered load is greater than confi gured capacity but below the maximum over-
load capacity . If the system attempts to serve an offered traffi c load above its con-
fi gured capacity limit, then service latencies are likely to increase as work queues 
fi ll faster than the queues. Well - engineered traditional systems will implement 

     Figure 7.4.     Offered Load, Service Reliability, and Service Availability of a Traditional System.  
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overload control mechanisms that detect when the offered load exceeds the 
capacity of the resources available to serve load, and take proactive steps to shape 
the load so that acceptable service is delivered to the maximum number of users 
or those with priority (e.g., emergency calls). A common overload control action 
is to explicitly queue the request for brief bursts of traffi c (e.g.,  “  all agents are 
busy; please remain on the line and your call will be served by the next available 
agent  ” ) or to return a  “ too busy ”  indication to some service requests for sustained 
overload (e.g.,  “  all circuits are busy; try your call again later  ” ). While the over-
loaded system remains available and in control of the load, requests from at least 
some users do not complete successfully and thus may be counted as failed or 
defective transactions and thereby impact service reliability metrics. As a system 
enters overload, many requests appear to be unacceptably served from the user ’ s 
perspective because being told to try again later or wait is not the same as cor-
rectly serving the request. Users will often consider requests that were not served 
correctly from their perspective as not being reliable, and thus messages rejected 
due to successful operation of overload mechanisms are often counted as impair-
ments against service reliability metrics, even if the overload responses are 
returned within the specifi ed latency targets (and hence do not count as service 
latency impairments). Note that these impacted transactions are attributed to the 
enterprise or service provider because they failed to engineer suffi cient capacity 
to serve the load rather than to the supplier because the application is managing 
the additional load for a period of time and/or correctly responding to overload. 
As application overload controls cannot deal with an infi nite offered load, the 
nominal overload control capacity is generally specifi ed as a multiple of the 
engineered capacity of a particular confi guration (often 2 – 10 times), and over-
load control testing will verify that the system can endure sustained load at this 
maximum overload capacity and automatically revert to normal operation shortly 
after the offered load falls to or below the engineered capacity of the system.  

   •       Offered load exceeds maximum overload capacity . When offered load far exceeds 
available processing, storage, and/or networking resources (e.g., during a distrib-
uted denial of service [DoS] attack) the system must take dramatic actions, such 
as fl ushing and discarding all (or virtually all) network traffi c, or risk failing 
catastrophically under the crushing traffi c load. When an application discards all, 
or virtually all, user requests it is not available for user service, and thus is not 
generally considered available. When an application stops responding to user 
requests in a last - ditch attempt to avoid collapse (or because of collapse/
catastrophic failure), service availability is nil because no traffi c is served. While 
the application may continue to execute and respond to management commands, 
since no more than a tiny portion of the offered load of user traffi c is served, the 
application is effectively unavailable for user service.       

   7.3    TRADITIONAL CAPACITY PLANNING 

 Reconfi guring physical hardware (e.g., adding more RAM or processors to a server) 
is typically an activity that requires the server to be powered off, thereby potentially 
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impacting all users served by applications hosted on that server. Thus, growing (or 
degrowing) a traditional server ’ s hardware confi guration is typically a service - impacting 
action with signifi cant operational expense for the following activities:

    •      Migrating traffi c served by applications hosted on the server to be 
reconfi gured;  

   •      Executing the hardware growth (or degrowth) procedure, which typically includes 
shutting down the server before executing the change and powering the hardware 
on after the change is completed;  

   •      Reconfi guring the operating system, platform, and application software to use 
the expanded (or contracted) hardware resources;  

   •      Restarting application software;  

   •      Gracefully migrating user traffi c back to the expanded (or off the contracted) 
application instance.    

 These activities often require direct human involvement and carry a nontrivial risk 
of failure; failure of any task during a growth or degrowth operation could increase
the duration of service impact outage and increase operating expense to address the 
failure. 

 Thus, growth or degrowth of hardware resources supporting traditional applica-
tions deployed directly on physical hardware is an expensive and time - consuming 
activity that carries a risk of failure that could produce a service outage. Some enter-
prises fi nd the expense and effort of upgrading computer hardware to be so onerous 
that it is more cost - effective to simply deploy new servers rather than upgrading 
systems that are deployed and in service. To minimize the opex and service availability 
risk of hardware resource growth, enterprises would generally engineer their hardware 
confi gurations to serve the largest expected busy hour, minute, or second of offered 
load. The assumption was that the larger capital expense investment for higher capacity 
up front would eliminate at least some of the opex and service availability risk of 
hardware resource growth of a production system. In addition, the opex and service 
availability impact of hardware resource degrowth coupled with the diffi culty in 
redeploying reclaimed/salvaged hardware resources meant that many underutilized 
hardware resources were simply left in place because it was more cost - effective to 
leave them in place than to undertake the expense and risk of resource salvage and 
redeployment.  

   7.4    CLOUD AND CAPACITY 

 Rapid elasticity is an essential characteristic of cloud computing that enables additional 
resources to be applied as needed to support application load, and reclaimed later when 
they are no longer needed. The measured service characteristic of cloud assures that 
cloud consumers are charged only for the resources they actually use, and thus consum-
ers have a fi nancial motivation to use resources wisely. Cloud enables three types of 
compute capacity growth (and degrowth):
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    •      Vertical Growth .      Individual virtual machine (VM) instances can be allocated 
more CPU, memory, and network resources.  

   •      Horizontal Growth .      More VM instances can be spawned to enable an application 
to meet the offered load.  

   •      Outgrowth .        Additional independent instances of the application can be run in 
different data centers, typically leveraging the common cloud characteristic of 
geographic distribution. When supported, this outgrowth can even be to alternate 
cloud service providers in what is called cloud bursting.    

 Note that applications must be engineered to support one, two, or all three growth 
strategies. These three growth scenarios are visualized in Figure  7.5 .   

 Nonvolatile data storage (i.e., disk) grows (and degrows) vertically based on 
storage volumes or fi le systems, which can grow (or shrink) in capacity. New storage 
volumes or fi le systems can also be created or destroyed to meet application capacity 
needs providing horizontal growth and degrowth. If necessary, nonvolatile data storage 
can also experience outgrowth by sharing storage volumes or fi le systems in another 
cloud data center. 

   7.4.1    Nominal Cloud Capacity Model 

   Figure  7.6  visualizes nominal usage of a pool of virtualized application instances in 
a computing cloud. A pool of online application server instances is available to instan-
taneously serve a maximum fi nite load with acceptable service quality. Under normal 
circumstances, a portion of that capacity is engaged serving the offered load, and the 
remainder of online capacity is spare. Cloud service providers will strive to confi gure 
resource pooling so that resources (e.g., processing) that are not required by one appli-
cation might be used by another, similar to how an operating system schedules run-
nable processes onto available processors. The offered load varies over time, and the 
application should automatically engage spare capacity as load increases, potentially 

     Figure 7.5.     Visualizing VM Growth Scenarios.  

VM VM VM

Bigger
VM

VM VM

Horizontal Growth
Add more VM instances

Vertical Growth
Increase 

resources for
VM instances

Out growth
Spawn VM instances

in another cloud data center



CLOUD AND CAPACITY 139

preempting another lower priority application, and engage less capacity as load 
decreases (implicitly increasing spare capacity), as the time varying offered load line 
shows in Figure  7.6 . CPU, memory and network consumption are likely to vary 
directly with offered load, while storage consumption are often somewhat coupled with 
offered load.   

 Behind the high - level visualization of Figure  7.6  are a set of online VM instances 
each hosting a portion of the application ’ s service capacity, as shown in Figure  7.7 . 
This visualization nominally represents the capacity available to a single application 
instance in a single data center, but a similar visualization could be used to represent 
aggregate capacity across a pool of application instances in several data centers. Nomi-
nally, load will be distributed uniformly across the online VM instances, such as via 
DNS, a load balancer, or  application distribution controller  ( ADC ). Each VM instance 
may be running on different hypervisor instances on different server hardware to mini-
mize the risk of a single hardware or hypervisor failure impacting an unacceptably large 
portion of service capacity. Ideally, users would be served by a VM instance in a data 

     Figure 7.6.     Nominal Capacity Model.  
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     Figure 7.7.     Implementation Architecture of Compute Capacity Model.  
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center physically close to them to minimize transport latency, but well - engineered 
networks will often be capable of serving users with acceptable service quality, latency, 
and reliability from several data centers in their geographic region.   

 Figure  7.8  illustrates how cloud service providers can instantiate additional VM 
instances (e.g., horizontal growth) to increase online capacity, and release VM instances 
to reduce online capacity.   

 Note that we use the term  “ spare online capacity ”    to refer to service capacity that 
is instantly available to the application when needed but is not currently engaged. One 
can logically divide this spare capacity into:

    •       Reserve online capacity , which is maintained to cover both: (1) spikes in offered 
load until rapid elasticity mechanisms can bring additional service capacity 
online and (2) as redundant capacity for high availability mechanisms to instantly 
mitigate the impact of inevitable failure events.  

   •       Wasted capacity : Capacity that is beyond what is required to serve the offered 
load (aka, engaged online capacity) and the level of reserve online capacity 
dictated by enterprise operational policy is effectively unneeded and thus deemed 
waste. Inevitably, there will be some nominally  “ wasted ”  spare capacity beyond 
the level of reserve capacity dictated by the application ’ s operational policies due 
to quantization of resources (e.g., you can ’ t allocate or deallocate half a VM). 
However, when this level of wasted online capacity exceeds the infrastructure as 
a service (IaaS) provider ’ s allocation/deallocation unit size, then one should 
consider deallocating the unneeded resources.    

 Conversely, when offered load increases, some spare capacity will become engaged, 
thereby logically shrinking the pool of online spare capacity. When the level of spare 
online capacity falls below a minimum reserve threshold, then the application can 

     Figure 7.8.     Orderly Reconfi guration of the Capacity Model.  
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elastically grow to rebuild spare capacity, subject to the consumer ’ s operational con-
straints (e.g., budget and software license limits). If insuffi cient spare online capacity 
is available to serve the offered load with acceptable service quality and comply with 
operational policies for minimum acceptable online reserve capacity, then the applica-
tion should activate overload controls.  

   7.4.2    Elasticity Expectations 

 Elastically growing or degrowing the resources available to an application requires:

    •      the cloud service provider to locate and allocate requested resources for the cloud 
consumer; and  

   •      the application software to reconfi gure itself to use those newly available 
resources.    

 Elastic degrowth is logically the reverse: a running application instance must release 
some used resources and the cloud service provider reclaims those resources to make 
them available for other cloud consumers. 

   Slew rate in electronics refers to the maximum ability of a circuit, especially an 
amplifi er, to drive the output to track with changes in input. The classic example of 
slew rate is illustrated in Figure  7.9  as the output of an amplifi er tracks with a square 
wave input. While the input is assumed to be capable of  “ instantly ”  changing signal 
levels from low to high, the amplifi er takes fi nite time to drive the output level from 
low to high for fundamental physical reasons (e.g., capacitive load).   

 As with physical amplifi ers, application capacity cannot be grown infi nitely fast 
to track with changes of offered load. A decision must fi rst be made to add application 
capacity, and then additional resources must be requested from the cloud service pro-
vider (nominally via the on - demand self - service essential characteristic of cloud com-
puting). The cloud service provider must locate suitable available resources and allocate 
them to the cloud consumer. Then the application must:

   1.     start up the host operating system, platform, and application software in the 
newly allocated VM instance; and  

  2.     integrate this new service capacity with the preexisting independent application 
instance before the service capacity is fully operational and available to serve 
offered load.    

     Figure 7.9.     Slew Rate of Square Wave Amplifi cation.  
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 Thus, the (growth) slew rate is the increment of additional capacity divided by the 
latency to decide that additional capacity is needed, to allocate suitable capacity from 
the cloud provider, and to engage that newly allocated resource capacity with a running 
application instance. Note that the time for the XaaS platform to allocate new resources 
is a critical contributor to elastic growth latency, but additional application latency is 
required to make the newly allocated capacity available to serve end users. This is 
illustrated in Figure  7.10 .   

 Elastic growth slew rate can be improved by:

    •      increasing the capacity growth per elastic growth event (increasing  Δ  capacity 
or  dy  from calculus); or  

   •      reducing the capacity growth latency (decreasing  Δ  latency or  dx  from 
calculus).    

 It is likely that horizontal, vertical, and outgrowth events will each offer different incre-
ments of  Δ  capacity, and the  Δ  latency may also vary as both the cloud service 
provider(s), and application instances must do different work to support each of these 
three growth options. Likewise, there will be practical and design limits to the resource 
capacity increments that are offered by the cloud (e.g., no 1   THz virtual CPUs are 
available) and architectural limits on individual application instances (e.g., supporting 
a maximum number of VMs per application instance). Thus, highly elastic applications 
will support multiple options for horizontal, vertical, and/or out growth. Given the fi nite 
growth slew rate, applications must decide how much excess spare capacity to maintain 
online to follow normal variations in offered load, and at what load level to engage 
more capacity to minimize the risk of elastic failure. 

 Allocating and reclaiming resources is neither trivial nor instantaneous. Table  7.1  
gives the Open Data Center Alliance ’ s (ODCA ’ s) expectations for the rate of elastic 

     Figure 7.10.     Slew Rate of Rapid Elasticity.  
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growth and degrowth by service - level agreement (SLA) level. Figure  7.11  visualizes 
these expectations in a plot of expected elastic capacity growth by time compared with 
the theoretical scenario of nominally doubling resource allocation instantly. The key 
insight from Table  7.1  and Figure  7.11  is that elastic growth is not fast enough to simply 
replace overload controls. Instead, elastic growth should enable applications to grace-
fully grow their online capacity ahead of offered load so that overload controls need 
not activate as frequently as might be necessary with static application capacity arrange-
ments that cannot easily change on a timely basis. Likewise, application capacity can 
be gracefully reduced over time to reduce a cloud consumer ’ s operating expense.     

     Figure 7.11.     Elasticity Timeline by ODCA SLA Level.  

IaaS Elasticity Expectations by ODCA SLA

0

100

200

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Time in Hours

O
n

lin
e 

C
ap

ac
it

y 
(%

)

Ideal Elasticity
Platinum
Gold
Silver
Bronze

Ideal elasticity 
offers huge 

capacity changes 
instantaneously

Real elasticity 
takes time and 

has limits…

  TABLE 7.1.     ODCA  IaaS Elasticity Objectives   [ODCA - SUoM]   

   SLA Level     Description  

  Bronze    Reasonable efforts to provide ability to grow by 10% above current usage 
within 24 hours, or 25% within a month.  

  Silver    Provisions made to provide ability to grow by 10% within 2 hours, 25% 
within 24 hours, and 100% within a month.  

  Gold    Signifi cantly additional demonstrable steps taken to be able to respond 
very quickly to increase or decrease in needs; 25% within 2 hours, 50% 
within 24 hours, and 300% within a month. Penalties to be applied if 
this capacity is not available to these scale points when requested.  

  Platinum    Highest capacity possible to fl ex up and down by 100% within 2 hours, 
1000% within a month, with major penalties if not available at any time 
as needed.  

  Source :   Open Data Center Alliance.  ©  2011 Open Data Center Alliance, Inc. All Rights Reserved. 
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 As Figure  7.11  shows, the committed elastic growth increment (e.g., plus 10% of 
allocated capacity, plus 25% or plus 100%) of application capacity is likely to be limited 
by the elasticity SLA of the cloud service provider. The delay in making that additional 
application capacity available to end users is likely to be at least a couple of hours, and 
perhaps a day or more. Thus, applications should maintain suffi cient spare online capac-
ity and activate overload controls to manage traffi c beyond that capacity so that they 
can likely serve a growing traffi c load with acceptable service quality until elastically 
grown application capacity can be brought online. Likewise, elastic growth should 
replenish the pool of online spare resource capacity that will be consumed prior to the 
elastically grown capacity coming online so that additional growth in user workload —
 or service recovery on failure — can be served with acceptable service quality.   

   7.5    MANAGING ONLINE CAPACITY 

 The on - demand self service essential characteristic of cloud computing integrates with 
the rapid elasticity characteristic to permit close to real - time management of an applica-
tion ’ s online resource usage. The process of online capacity management has several 
high - level steps that are visualized in Figure  7.12  and discussed below.

    •       Monitor offered load and resource usage  to accumulate absolute and trend data 
to support business decisions on appropriateness of current resource allocation  

   •      Decide .      Business logic is applied to the monitored data, along with historic data, 
trend analysis, and heuristic considerations to decide either: 

     Figure 7.12.     Capacity Management Process.  

Monitor offered
load and 

resource usage

Grow
capacity

Degrow
capacity

Pause…

Repeat…

Is Capacity
Change

Necessary?

Yes, make bigger. Yes, make smaller.

No change to
capacity



MANAGING ONLINE CAPACITY 145

   1.     Insuffi cient spare capacity is online to assure an acceptably high probability 
of serving anticipated load with acceptable service quality, reliability and 
availability, and thus resource allocation should be grown.  

  2.     Excess spare capacity is allocated, and thus resource allocation should be 
decreased (degrown)  

  3.     Current spare online capacity offers an acceptably high probability of serving 
anticipated load with acceptable service quality, reliability, and availability 
without unacceptable waste, so no capacity change is needed at this time.    

   •      Grow Capacity .      If resource growth is decided, then a request for additional 
resources must be passed to the IaaS supplier. The IaaS supplier should promptly 
allocate and furnish the requested resources to the application. The application 
then engages the new resources (e.g., initializes application software in the newly 
allocated VM instance) to bring the new application capacity online to serve 
users.  

   •      Degrow Capacity .      If resource degrowth is decided, then the application must 
decide exactly which resource(s) (e.g., VM instance and block[s] of storage) will 
be disengaged of the targeted resource from service (e.g., drain traffi c from the 
VM instance or move active data from the data block[s]). After the targeted 
resource is successfully disengaged, the application requests the IaaS service 
provider to deallocate the resource (e.g., by gracefully shutting down a VM 
instance or releasing storage block[s]).  

   •      Pause and Repeat .      Suffi cient spare capacity should be maintained online so that 
capacity management decisions can be made periodically (e.g., every 15 minutes) 
rather than continuously (e.g., every microsecond), because it will inevitably take 
some time for each capacity management change to be completed and for traffi c 
to properly engage on the reconfi gured resource allocation. The repetition fre-
quency for capacity management decisions can be statically confi gured (e.g., 
every 15 minutes) and/or triggered by threshold crossing alarms (e.g., resource 
high or low water marks crossed) and/or by heuristics (e.g.,  x  minutes after a 
growth or degrowth operation).      

   7.5.1    Capacity Planning Assumptions of Cloud Computing 

 The cloud service model enables the cloud service provider to focus on assuring that 
adequate resource capacity is available to meet consumers ’  demand, and thus the cloud 
consumers can focus on engaging and releasing resources to meet the needs of their 
users. This is the heart of the utility computing vision of cloud computing. Traditional 
application capacity planning assumptions are shattered by the shift to cloud computing. 
Consider how the often implicit assumptions of traditional capacity planning no longer 
apply to applications deployed on computing clouds.

   1.     Future traffi c demands must be carefully anticipated because acquiring 
additional hardware resources to serve offered load requires a long lead 
time .      The rapid elasticity offered by IaaS cloud providers assures that 
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additional hardware capacity will be available in nearly real time (i.e., rapidly). 
The on - demand self - service essential characteristic assures that the actual pro-
cedure for requesting additional resources is streamlined and simple to use. The 
measured service characteristic assures that consumers are charged only for the 
resources consumed, so more careful resource usage lowers cloud consumers ’  
operating expenses.  

  2.     Releasing unused/unneeded hardware capacity is pointless because those 
resources cannot be cost effectively reclaimed/reused by other applica-
tions .      IaaS cloud service providers focus on effi ciently managing huge pools 
of hardware resources, so any hardware resources released can be effectively 
reused by other applications. In addition, the measured service essential char-
acteristic of cloud assures that cloud consumers will not be charged for unused 
resources that are released and reclaimed by the cloud service provider.  

  3.     Capacity change events are inherently risky and expensive, and thus the 
number of growth (or degrowth) events should be minimized .      On - demand 
self service reduces the incremental opex of capacity change events, and the 
automation behind the cloud ’ s on - demand self service interface(s) enables more 
rigorous automated checking compared with traditional processes, thus reduc-
ing the risk of error. The measured service nature of cloud computing assures 
keeping resource usage closer to offered load (e.g., via frequent small capacity 
changes) can reduce opex compared to traditional (e.g., occasional large capac-
ity changes). Thus, the closer a cloud consumer tracks their resource usage to 
the offered load via frequent capacity management events, the lower the con-
sumer ’ s cloud service operating expense.    

 Having discarded the traditional assumptions of capacity planning, one is free to recon-
sider the fundamentals of capacity planning based on the essential and common char-
acteristics of cloud computing. The authors suggest the following capacity planning 
goals for cloud based applications:

   1.      Cloud hosted applications should support rapid online resource growth in 
modest cloud - oriented resource allocation units (e.g., individual VM instances 
and storage blocks) .  

  2.      Applications should support graceful service migration of users  (i.e., draining 
traffi c) from target VM instances to another VM instance so excess service 
capacity can be released.  

  3.      Applications should support release of online but unneeded resources without 
disrupting user service  (i.e., after user traffi c has been drained from the target 
VM instance).  

  4.      Applications should support multiple independent application instances running 
simultaneously — often in geographically distributed data centers — and possibly 
hosted by different cloud service providers (i.e., cloud bursting) .  

  5.      Applications should support balancing offered traffi c load across multiple inde-
pendent application instances .  
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  6.      Applications should support graceful (even if service impacting) migration of 
user traffi c from one independent application instance to another . This simpli-
fi es draining an independent application instance that was spawned to meet 
peaks in service demand after offered load has returned to normal levels and 
the additional service capacity is no longer required.      

   7.6    CAPACITY - RELATED SERVICE RISKS 

 Overload is the primary capacity - related risk that traditional applications are vulnerable 
to when offered load exceeds engineered capacity. Applications that support rapid 
elasticity are  theoretically  not vulnerable to traditional overload because the engineered 
capacity can nominally increase to perpetually stay above the offered load. Note that 
for practical architectural and design reasons, individual application instances can only 
expand to a fi nite physical limit, and thus elastic applications should support the cre-
ation of an arbitrary number of application instances to serve large offered loads, and 
mechanisms must be available to effi ciently distribute offered load across an arbitrary 
large aggregate pool of application instances. 

 If the offered load grows faster than the cloud can allocate additional resources 
and the application can bring additional capacity online, then an elasticity failure 
occurs, which impacts at least some offered load. In addition to elasticity failures, cloud 
deployments are subject to increased service latency risks due to multitenancy and other 
factors. Critical failure of an application VM instance can also present the risk of partial 
service capacity loss outage. This section considers elasticity failures, service reliability, 
and latency impairments and partial capacity loss failures. 

   7.6.1    Elasticity and Elasticity Failure 

 Figure  7.13  illustrates how successful elasticity addresses increases in offered load: as 
offered load increases and less spare online capacity is available, additional resources 
can be allocated and additional VM instances created to serve the load and maintain 
an acceptable cushion of spare capacity that is available to serve new traffi c. Note that 
online capacity is increased in discrete steps as individual VM instances come online 
and are available to serve offered load. Likewise, online capacity can be released one 
VM instance at a time as offered load declines and excess spare online capacity is 
available.   

 Since instantiating application VM instances involves starting VM instances, 
loading images, and initializing virtualization and application software, it takes a fi nite 
amount of time to bring new service capacity online. Thus, there is a risk that if offered 
load increases so fast that new capacity cannot be brought online before all spare online 
capacity is consumed, then some offered load will not be served with acceptable service 
quality, latency, and reliability, as shown in Figure  7.14 . The exact behavior experienced 
by users when offered load exceeds online capacity will be determined by the overload 
control mechanisms and policies implemented by the application and the application 
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itself, but at least some users are likely to experience one of the following unacceptable 
responses to service requests:

    •      Explicit overload failure indications, such as SIP ’ s 503 Service Unavailable 
response (meaning  “  The server is temporarily unable to process the request due 
to a temporary overloading or maintenance of the server  ”   [RFC3261] ).  

   •      Increased service latency, possibly even service latencies beyond the maximum 
acceptable service latency requirement.  

     Figure 7.14.     Elasticity Failure Model.  
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     Figure 7.13.     Successful Cloud Elasticity.  
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   •      Time - out expiration because a message request was discarded by the cloud plat-
form or application without sending a reply.      

 The application ’ s overload control policy can determine how user service is impacted 
when offered load exceeds online capacity, and this infl uences whether elasticity fail-
ures (i.e., overload situations) appear as service latency impact (e.g., service unaccept-
ably slow), service reliability impact (e.g., server busy), service availability impact 
(e.g., response latency exceeds maximum acceptable service latency and server appears 
down), or a combination. Note that overload control policies can explicitly treat indi-
vidual users differently. For example, 

   •      new session/logon requests might be rejected from some classes of users to shed 
offered load (e.g., requests from  “ silver ”  and  “ bronze ”  users are rejected while 
 “ gold ”  users ’  requests are served);  

   •      resource - intensive requests that consume more scarce online capacity might be 
rejected during overload periods;  

   •      every  “  N th ”  request from some classes of users might be rejected in a round - robin 
fashion to shed offered load;  

   •      active sessions, pending, or queued service requests might be cancelled for some 
classes of users; or  

   •      combinations of these or other policies might be executed.    

 As discussed in Chapter  3 ,  “ Service Reliability and Service Availability, ”  the service 
impact of elasticity failures must be considered for individual users:

    •      Users who experience signifi cantly increased service latency will deem service 
quality to have degraded. Service quality impact can be quantifi ed by the absolute 
number of users who experience signifi cantly increased service latency or nor-
malized by the percentage of active users who experience signifi cantly increased 
service latency.  

   •      Users who have individual and isolated service requests that fail or are unaccept-
ably delayed will deem service reliability to be impacted. Service reliability 
impact is quantifi ed by the absolute number of impacted service requests or 
normalized by the number of impacted service requests per million transactions, 
especially during the overload period.  

   •      Users who are unable to obtain service in less than the maximum accept-
able service disruption period (e.g., 10 seconds) will consider the service 
unavailable.     

   7.6.2    Partial Capacity Failure 

 Critical software failures of virtualized applications will typically impact a single VM 
instance. The critical failure event will impact whatever offered load was actively being 
served by the application instance experiencing the critical failure, and will reduce the 
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spare online capacity, as shown in Figure  7.15 . The users who had pending transactions 
with the failed application VM instance are likely to experience service reliability 
impact if pending transactions and/or perhaps volatile information in the failing VM 
instance is lost; users whose sessions were served by the failed application instance are 
also likely to experience some visible service impact on their next service request to 
the failed application instance. Assuming there is suffi cient spare online capacity to 
serve the impacted traffi c load and the application is properly designed, service requests 
from impacted users will migrate to other VM instances; the exact service recovery 
time depends on the application protocol options, the application architecture, behavior 
of the user ’ s client application and other factors. High availability mechanisms should 
instantiate a new VM instance to restore online service capacity to its prefailure level. 
Note also that highly available systems are confi gured so that no single failure will 
decrease online capacity below the engineered capacity, and that the impact of a VM 
failure may be similar to the failure of a single blade or server in traditional deployment 
architecture. Thus, for high availability systems, the service impact is limited to the 
time it takes to migrate impacted users from the failed instance to  “ spare ”  online capac-
ity. In contrast, systems that were not engineered with adequate redundancy may experi-
ence capacity loss until the failed instance can be recovered.   

 The service impact of partial capacity failures is quantifi ed by considering the 
number of users who are impacted by the failure event and the duration of service 
impact while the failure is detected, and they are migrated to spare online application 
instances. This absolute number of users or impacted user minutes value gives a tan-
gible metric for actual service impact.  

   7.6.3    Service Latency Risk 

 Virtualization explicitly decouples application software from the underlying hardware, 
and the essential cloud characteristic of multitenancy increases the risk that resource 

     Figure 7.15.     Virtualized Application Instance Failure Model.  
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contention may increase latency for an application to utilize a shared resource like CPU, 
networking, or storage, especially when one or more applications are under stress. The 
incremental latency comes from several sources:

    •      Resource Contention Latency .      Any resource sharing increases the risk of resource 
contention that is typically addressed via some form of queuing and queuing 
entails a wait period, thus accruing latency. Resource contention is more likely 
to occur as the traffi c load on the system increases. As increasing resource utili-
zation is a primary goal of many virtualization deployments (e.g., server consoli-
dation), increasing resource contention is a likely side affect of virtualized 
deployments. Carefully tuned queuing/scheduling strategies are essential to 
assure that application instances receive timely access to resources so they can 
deliver acceptable service latency to users.  

   •      Real - Time Notifi cation Latency .      While access to physical resources like compute 
cycles, disk storage, or networking are likely to be randomly distributed across 
time, real - time clock interrupt notifi cations are inherently synchronized. If mul-
tiple application instances request notifi cation for the same real - time clock inter-
rupt event, then some executions may be serialized and thus implicitly shift the 
real time understood by the applications that are notifi ed last. If the application 
requires periodic or synchronous real time notifi cation, such as for streaming 
media, then any variations in execution timing of application instances can intro-
duce notifi cation jitter. While the virtualized application may or may not be aware 
of any notifi cation jitter, end users will directly experience this jitter; if this jitter 
is severe enough, then the users ’  quality of experience will degrade. Real - time 
notifi cation latency risk increases as more applications execute processing trig-
gered by clock interrupts.  

   •      Virtualization Overhead Latency .      System calls made by application software 
may pass through the additional layer of hypervisor software in virtualized 
deployment to access hardware resources, and the additional layer of software 
may add some latency. Note that the virtualization overhead latency is dramati-
cally shortened as virtualization enabled processors are deployed and hypervisors 
evolve to fully leverage hardware support for virtualization.    

 These service latency risks are fundamentally the same as those that confront applica-
tions running on time shared operating systems; however, since virtualization enables 
more applications to share hardware resources and achieves higher hardware utiliza-
tion levels than are typically experienced on traditional architectures, the risk may be 
even greater. Compared with native deployment of an application instance executing 
on a traditional operating system platform running directly on physical hardware, vir-
tualization slightly increases service latency due to execution overhead of the virtualiza-
tion manager. Application service latency of a virtualized confi guration is likely to 
increase somewhat compared with native as the service load approaches the full 
engineered capacity of the physical hardware confi guration due to the scheduling over-
head of the virtualization manager. Theoretically, appropriate system confi gurations 
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and well engineered virtualization confi gurations can potentially produce better 
overall service by optimally sharing more powerful hardware platforms compared 
with more modest hardware that might have been used for standard application 
deployment. 

 Virtualization may slightly increase both baseline service latency and as well as 
service latency for some requests, especially when the virtualized platform is under 
load. This impact is likely to be manifest in changes to the distribution of service latency 
for application requests compared with baseline (nominal, or 50 – 60% of engineered 
load) performance. If the application and virtualized platform are well designed, engi-
neered, and confi gured, then the shape of the service latency distribution should remain 
the same at full engineered load as it was at nominal load, although the latency for 50th 
percentile at full engineered load may be slightly higher than at nominal load, and the 
95th 1  percentile may be proportionally larger at full load than it was at nominal load. 
A particular risk is if service latency, especially the 95 th  percentile tail, increases dra-
matically as the system reaches full engineered capacity, then more of the latency tail 
will fall beyond the maximum acceptable service latency time, and thus impact service 
reliability metrics. For example, if the 95th percentile is twice the 50th percentile at 
nominal (50% capacity) load, but the 95th percentile jumps to fi ve times the somewhat 
higher 50th percentile latency at full engineered load, then more requests in the distri-
bution tail are likely to have unacceptably long service latency, and thus be counted as 
service reliability impairments resulting in disappointed users. The key performance 
metric is to characterize how much the 95th percentile service latency increases as the 
traffi c load increases to full platform capacity, and to verify that even at that increased 
service latency, the rate of transactions having greater than maximum acceptable service 
latency is low enough to meet business needs. 

 Thus, applications might want to monitor that the cloud provider is actually deliv-
ering the resource capacity expected (e.g., that another cloud tenant is not compromis-
ing the target application ’ s access to resources). If availability of allocated resources is 
degraded (e.g., due to increased latency), then it may be expedient for the application 
to request additional resource capacity on a different hypervisor with the expectation 
that additional capacity will not be burdened with the same exogenous processing load 
that is degrading the target VM instance.  

   7.6.4    Capacity Impairments and Service Reliability 

 Service reliability impairments (e.g., failed or defective transactions) accrue due to the 
following factors:

    •       Critical failures , which cause pending transactions to be lost and cause service 
requests to fail until failure detection and recovery is completed.  

  1      The authors use 95th percentile as a reasonable point in the latency tail (along with 50th percentile) for 
analysis; readers can use whatever tail point is customary for their industry or application (e.g., 99th percen-
tile, 99.5th percentile, and 99.9th percentile). 
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   •       Activation of subcritical software defects  — occasionally, residual software defects 
will cause some requests to execute incorrectly, but will not cause a critical 
failure that requires explicit recovery action.  

   •       Transient or one - shot events  like lost or corrupted IP packets or queue overruns 
due to a random, momentary traffi c spike.  

   •       Failure of a supporting system  — complex applications often rely on other 
systems, such as database servers, authentication/security servers, payment 
systems, and so on. When that supporting system experiences transient, brief or 
prolonged service disruption, then the target system may be forced to fail some 
or all service requests, and thus service reliability metrics for the target system 
will be impacted.  

   •       Excessive service latency  as discussed in Section  3.5 ,  “ Service Latency, ”  and 
Section  7.6.3 ,  “ Service Latency Risk. ”   

   •       Live migration of VM instances , which may cause some requests to be lost and/
or delays in responses to be so long as to be deemed failed transactions, and thus 
count as service reliability impairments.    

 Note that although service availability impairments (aka, outages) are generally isolated 
to the actual system instance experiencing the failure to enable accurate system - specifi c 
service availability metrics (especially for contractual liability for service availability 
attached to SLAs), brief transient events are often not tracked to the primary root cause. 
Instead, service reliability impairments are often broadly bucketed as either chronic 
impairments or acute impairments. Acute impairments are often correlated with critical 
failures of the target system or a supporting system, or some network event (e.g., router 
failure), or some application overload event. Chronic impairments are not generally 
traced to or correlated with specifi c failures or events; activation of subcritical software 
failures and recurring transient events (e.g., lightning, occasional buffer overfl ows) 
generally fall into the chronic impairment bucket. 

 Excessive service latency and transient or one - shot failures can be minimized by 
appropriate system architecture and confi guration (e.g., automatic protocol retries for 
lost messages) and adequate testing to validate and baseline service performance. 
Residual critical and subcritical software defects are removed prior to commercial 
service startup via appropriate quality processes, especially adequate system verifi ca-
tion testing. Critical hardware failures are minimized via appropriate system architec-
tures, robust hardware design and reliability diligence, and high - quality component 
sourcing and manufacturing processes. If live migration has any service impact on user 
service offered by an application, then the number of live migration events should be 
minimized to reduce the overall service reliability impact to users.   

   7.7    CAPACITY MANAGEMENT RISKS 

 This section considers the reliability risks to the generic capacity management process 
that was described in Section  7.5 ,  “ Managing Online Capacity. ”  Section  11.1.5  will 
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discuss ways to mitigate the impact of some of the risks. Figure  7.16  overlays the 
canonical capacity management failure scenarios onto the canonical capacity manage-
ment model shown in Figure  7.12 . Each of these failure scenarios are detailed in a 
subsequent section.   

   7.7.1    Brittle Application Architecture 

   Cloud applications should be architected to be highly elastic to gracefully serve what-
ever traffi c load is presented by expanding and contracting the resources used by the 
application rather than being brittle and constrained. Individual application instances 
should effi ciently scale from small to moderate to large capacity, and it should be pos-
sible to create additional application instances that can cooperate to serve a larger traffi c 
load. Individual application instances should share no components to eliminate the risk 
of a single component failure impacting more than one application instance. It should 
be possible to geographically distribute individual application instances both to improve 
service quality offered to users by serving them from application instances that are 
geographically close to the users (and thus have less transmission latency), as well as 
to support georedundancy for disaster recovery. 

 Elasticity of application architectures can be constrained, or brittle, on several 
levels:

   1.     the number of users served by a single application instance; and  

  2.     the number of application instances that can be federated together to serve a 
larger pool of users.    

     Figure 7.16.     Canonical Capacity Management Failure Scenarios.  
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 If the application does not support some form of graceful federation of application 
instances, then the maximum number of users served by a single application instance 
is a brittle limit of the architecture. If federation of application instances is supported, 
then architecture brittleness will appear at or below the product of the maximum 
number of federated application instances and the maximum number of users per appli-
cation instance.  

   7.7.2    Faulty or Inadequate Monitoring Data 

 Capacity management decisions are based on data about offered load and spare online 
capacity. Design fl aws or failures that compromise this data can cause capacity manage-
ment processes to break down. Likewise, if the solution or application architecture does 
not permit visibility to key system load parameters that actually characterize the true 
workload on a VM instance (e.g., depth of work queues and triggers when work queues 
overfl ow), then effi cacy of capacity management processes will be impacted.  

   7.7.3    Faulty Capacity Decisions 

 Capacity management is fundamentally about making decisions to proactively manage 
the resources allocated to an application so users are served with acceptable service 
quality, reliability, and availability at acceptable cost to the cloud consumer. Even when 
provided with correct input data or rules to manage and fulfi ll business policies, faulty 
capacity management decisions can be made if:

    •      business policies for growth and degrowth are fl awed (e.g., inappropriate capac-
ity growth and degrowth triggering criteria thresholds are used); or  

   •      residual software defects (aka, bugs) in decision logic cause business policies to 
be executed incorrectly by automatic software mechanisms.     

   7.7.4    Unreliable Capacity Growth 

 Capacity growth involves two steps, each of which can fail:

   1.     Application requests additional resource from IaaS service provider but the 
IaaS service is unable to serve the request .      If the request fails with a transient 
error, then the application should retry the allocation request. If the request fails 
repeatedly or with a persistent error or insuffi cient resources are provided by 
the IaaS service provider, then the application should burst to instantiate another 
application instance in another data center or cloud to grow capacity. The sce-
nario of not bursting on resource allocation failure is covered in Section  7.7.8 , 
 “ Resource Stock Out Not Covered. ”  The case of cloud burst failing is covered 
in Section  7.7.9 ,  “ Cloud Burst Fails. ”   

  2.     Application engages newly allocated resource .      Application initializes the 
allocated resource, synchronizes/integrates the resource with the preexisting 
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application instance, and begins engaging the resource to serve users. Failures 
in resource initialization, synchronization, or engagement should be automati-
cally detected, alarmed, and recovered. Some transient failures may be miti-
gated simply by retrying the operation; other failures will require more elaborate 
recovery strategies.     

   7.7.5    Unreliable Capacity Degrowth 

 Once a capacity decision has been made to release a particular resource, a multistep 
degrowth process must be executed to prevent the associated hazards:

   1.     Application stops directing new requests to targeted resource .      Traffi c that is 
not redirected away from the targeted resource will eventually be impacted 
when the resource is deactivated and deallocated.  

  2.     Application fails to gracefully drain traffi c/users from the targeted 
resource .      Preexisting traffi c that is not gracefully transitioned or drained 
from the resource will be impacted when the resource is deactivated and 
deallocated.  

  3.     IaaS provider fails to deallocate the targeted resource .      If the deallocation 
request to the IaaS service provider fails, then the cloud consumer may continue 
to be charged for the resource even though it is presumably no longer produc-
tively engaged by the application.     

   7.7.6    Inadequate Slew Rate 

 Horizontal, vertical, and outgrowth will have different capacity growth slew rates. With 
a Slashdot effect or another dramatic event, the offered load could grow faster than 
the maximum growth slew rate. If that rapid traffi c growth continues for long enough, 
then spare capacity will be consumed, and the service simply will not be able to keep 
up with the growth in demand, thereby producing an elasticity failure. Overload con-
trols should assure that the service impact of inadequate slew rate is deliberately 
managed to minimize impact to priority users (e.g., serving active users with acceptable 
service quality and refusing new session requests until additional capacity is online) 
rather than compromising service quality, reliability, and availability for most or all 
users.  

   7.7.7    Tardy Capacity Management Decisions 

 Allocating, initializing, and engaging additional resources inherently take time to com-
plete. Thus, capacity management decisions must anticipate trends and changes in load 
to request capacity changes before the capacity is actually needed and suffi cient time 
is available to successfully grow service capacity. If capacity management decisions 
are not made fast enough, then there may be insuffi cient online capacity to serve the 
growing offered load. For example, after an extraordinary or Slashdot event occurs, the 
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capacity management process should activate promptly so elastic growth actions can 
begin before the offered load completely overwhelms online capacity, possibly forcing 
newly allocated online capacity to immediately activate overload controls and shed load 
rather than normally serving the offered load.  

   7.7.8    Resource Stock Out Not Covered 

 Individual data centers and even particular IaaS service providers have fi nite physical 
resources. Resource allocation requests made after those resources are exhausted will 
fail, and applications should be prepared for those failures. Ideally, the applications will 
burst to another data center, possibly with another IaaS service provider. A less desir-
able strategy is to gracefully deny service requests according to business policies that 
cannot be served after IaaS capacity has been exceeded. Impacting service to existing 
users or crashing is unacceptable.  

   7.7.9    Cloud Burst Fails 

 An attempt to burst capacity to another data center, possibly a data center operated by 
a different IaaS service provider, could fail. Based on the cloud consumer ’ s policy, 
applications might attempt to burst to an alternate data center or IaaS supplier, or they 
might gracefully deny service requests that cannot be served by the preexisting resource 
allocation. Impacting service to existing users or crashing is unacceptable.  

   7.7.10    Policy Constraints 

 Cloud consumers may impose constraints on maximum application capacity based on 
business policies. For example, software or intellectual property used in the application 
may have been licensed up to a maximum capacity, which is not permitting more than 
 “ X ”  users to simultaneously access some licensed content or software component. To 
avoid breaching these contractual terms, cloud consumers may cap elastic growth at a 
certain point and rely on overload controls to assure that the maximum online capacity 
is appropriately shared by priority users.   

   7.8    SECURITY AND SERVICE AVAILABILITY 

   One dimension of security attacks involves the impact it has on service availability. 
This section reviews the security risk impact on service availability, discusses DoS 
attacks, discusses estimating the service availability impact of security attacks, and 
concludes with recommendations. 

   7.8.1    Security Risk to Service Availability 

 The International Telecommunication Union ’ s X.805 standard  “ Security architecture 
for systems providing end - to - end communications ”  recognizes that service availability 
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is one of the security dimensions that are vulnerable to attack. Figure  7.17  from  [X805]  
visualizes security threats and attacks challenging eight security dimensions across end 
user data plane, control plane, and management plane of networked applications. Per 
 [X805] ,  “ the availability security dimension ensures that there is no denial of authorized 
access to network elements, stored information, information fl ows, services and appli-
cations due to events impacting the network. ”    

 The availability security dimension is subject to two classes of threats:

   1.     Destruction of Information or Other Resources .      Damage or loss of user or 
confi guration information or other resource damage can prevent an application 
from delivering correct service to some or all users, thereby impacting service 
availability for affected users.  

  2.     Interruption of Services .      For example,      DoS or distributed DoS  ( DDoS ) attacks. 
A (distributed) DoS attack overwhelms the target system with service requests 
to drive the target into overload, and perhaps even collapse. When the system 
is overloaded with attack traffi c, legitimate users are likely to experience 
increased service latency or be denied service, and as the attack increases, the 
system may deny service to even legitimate users to avoid total system collapse. 
For cloud - based services, DoS/DDoS attacks may ramp up traffi c volumes 
faster than application capacity can be added, thus initially activating the elastic-
ity failure described in Section  7.6.1 , and eventually pushing traffi c levels far 
above the maximum authorized application capacity (e.g., license limits of 
software components of the application).    

 The X.805 security model of Figure  7.17  recognizes three planes of concern for secu-
rity, each with distinct security objectives:

    •       Management Plane Security Objectives of Availability Dimension ,      “ Ensure that 
the ability to administer or manage the network - based application by authorized 

     Figure 7.17.     ITU X.805 Security Dimensions, Planes, and Layers. 

  Source :   International Telecommunications Union [ITU - T G.114].  
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personnel and devices cannot be denied. This includes protection against active 
attacks such as denial of service (DoS) attacks as well as protection against 
passive attacks such as the modifi cation or deletion of the network - based applica-
tion ’ s administrative authentication information (e.g., administrator identifi ca-
tions and passwords) ”   [X805] .  

   •      Control Plane   Security Objectives for Availability Dimension .       “ Ensure that 
network devices participating in network - based applications are always available 
to receive control information from authorized sources. This includes protection 
against active attacks such as Denial of Service (DoS) attacks ”   [X805] .  

   •      End User (Traffi c) Plane     Security Objective for Availability Dimension .       “ Ensure 
that access to the network - based application by authorized end - users or devices 
cannot be denied. This includes protection against active attacks such as Denial 
of Service (DoS) attacks as well as protection against passive attacks such as the 
modifi cation or deletion of the end - user authentication information (e.g., user 
identifi cations and passwords) ”   [X805] .     

   7.8.2    Denial of Service Attacks 

 Denial of service and DDoS attacks seek to overwhelm a target application or network 
element with malicious service requests so that it is unable to service legitimate service 
requests and ends up crashing the target system. Interruption of service threats are cur-
rently a larger threat than destruction of information or other resources. The fi rst fi ve 
fi ndings of the 2010 Worldwide Infrastructure Security Report  [Arbor]  are as follows:

    •       Network Operators Face Larger, More Frequent Attacks as Attackers Redouble 
Their Efforts  .    . . .    attackers have moved aggressively over  [2010]  to dramati-
cally increase attack volumes — for the fi rst time launching DDoS attacks break-
ing the 100 Gbps barrier .  

   •       Application - Layer DDoS Attacks Are Increasing in Sophistication and Opera-
tional Impact  .    . . .       

   •       Mobile/Fixed Wireless Operators Are Facing Serious Challenges to Maintain-
ing Availability in the Face of Attacks  .    . . .       

   •       Firewalls and IPS  [Intrusion Prevention System]  Devices Are Falling Short on 
DDoS Protection  .    . . .       

   •       DDoS Attacks Have Gone Mainstream  . The mainstream media has extensively 
reported numerous high - profi le DDoS attacks motivated by political or ideologi-
cal disputes     

 One should begin by considering the theoretical upper limit of a DoS/DDoS attack. 
Applications ultimately execute on server hardware, and that server hardware is attached 
to a LAN in a data center via one or more network adapters. These network adapters 
often have nominal maximum speeds of 100 million bits per second (100   Mbps), 1 
billion bits per second (1   Gbps), or even 10 billion bits per second (10   Gbps). While it 
is generally infeasible to achieve 100% of the nominal maximum speed of the Ethernet, 
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achieving 80% of nominal maximum speed is often possible with appropriately con-
fi gured IP infrastructure; this maximum practical throughput is often referred to as 
 “ wire speed ”  because communications is fl owing at the maximum speed permitted by 
the  “ wire ”  (i.e., the network adapters, IP infrastructure, and physical media). While a 
1   Gbps Ethernet adapter is now fairly inexpensive, the compute and storage resources 
necessary to support up to 800   Mbps of wire speed user traffi c (e.g., hundreds of thou-
sands of requests per second) is far more expensive. Traditionally, enterprises and 
service providers generally scale their compute and storage resources to meet the 
expected load, rather than scaling hardware to serve the sustained full wire speed of 
the network adapter(s). Hence, sustained wire speed request traffi c can often drive an 
application far beyond engineered capacity so the system is forced to abandon legiti-
mate traffi c along with attacking traffi c. Dedicated attackers can and do mount wire 
speed DoS/DDoS fl oods at target systems. 

 Beyond straightforward  “ brute force ”  wire speed fl ooding attacks on applications, 
attackers also mount syntax, semantic, and resource attacks.

    •       Syntax attacks    deliberately send protocol request messages with syntactic errors, 
such as data overrun or under run, missing parameters, out of range parameters, 
and so on, with the expectation that these syntax errors will force the target 
system to parse the message, determine the syntax error, and construct an error 
response detailing the detected syntax error. All of that processing consumes CPU 
resources in an effort to crowd out service to legitimate user requests.  

   •       Semantic attacks    deliberately send protocol messages with invalid parameters, 
such as referencing transactions or web pages that don ’ t exist. This forces the 
application to consume processing and disk resources searching for an object that 
won ’ t be found, thus denying those processing and disk I/O resources to legiti-
mate users.  

   •       Resource attacks  deliberately consume shared resources by means of an applica-
tion installed to deplete all of the shared resources so that the  “ good ”  application 
cannot function.     

   7.8.3    Defending against  D  o  S  Attacks 

 Perimeter security elements like fi rewalls,  deep packet inspection  ( DPI ) engines,  intru-
sion detection/prevention system s ( IDPS ), and other security appliances supported by 
a robust security policy are the primary defense against DoS/DDoS and many other 
security attacks. 

 Figure  7.18  expands on Figure  7.4  to illustrate how perimeter security and network 
infrastructure elements can be confi gured to rate limit the offered load to an application 
to assure that offered load does not exceed the maximum tested overload capacity. 
Ideally, perimeter security elements will block all attack traffi c so that only legitimate 
user traffi c fl ows to the application. If the perimeter security is evaded by attackers 
(e.g., via a new attack signature in a so - called  “ zero day ”  attack), then rate limits in 
network infrastructure and security elements themselves should still assure that traffi c 
does not reach the maximum tested overload capacity.    
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   7.8.4    Quantifying Service Availability Impact of Security Attacks 

 In a successful DoS/DDoS attack, all traffi c to the target application or host is likely 
to be impacted until the attack is successfully mitigated, thus producing a service 
outage.  [Arbor]  reports that most DDoS attacks are successfully mitigated in less than 
30 minutes. The rate of DoS/DDoS attacks on deployed systems is driven by decisions 
of criminals and attackers based on economic and political considerations. Because the 
rate of security attacks cannot be generally estimated, it is inappropriate to make any 
quantitative estimates of the likely rate of DoS/DDoS attacks on a  “ typical ”  deployed 
system, nor of the likely service availability impact of the security attacks. 

 Accountability for service availability impairments due to security attack is a subtle 
topic. While the attacks are external attributable per  [TL9000]  because they represent 
 “  .   .   .     outages caused by third parties not associated with the customer  [enterprise or 
service provider]  or the organization  [supplier], ”  suppliers, service providers, and 
enterprises do have responsibility to minimize the security vulnerabilities exposed to 
attackers. Service providers and enterprises should protect networks and applications 
with appropriate fi rewalls and security appliances, establish appropriate password and 
authentication policies, promptly apply security patches, and follow other security best 
practices. There is always the risk of  “ day zero ”  and brute force DoS/DDoS attacks, 
but appropriate security diligence by suppliers, service providers, and enterprises can 
harden applications and thus make attackers efforts less effective. 

 Accountability for service availability impairments due to security attacks on 
cloud - based applications is even more complex than for traditional or virtualized appli-
cation deployments for reasons including:

     Figure 7.18.     Leveraging Security and Network Infrastructure to Mitigate Overload Risk.  
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    •      Rapid Elasticity Vulnerability .      Attackers can attempt to overload the rapid elas-
ticity mechanisms of cloud - based applications by increasing attack traffi c faster 
than additional service capacity can be engaged, and thereby presumably impact 
legitimate user traffi c.  

   •      Attacks from within the Cloud .      Attackers can mount an attack from within the 
cloud hosting the target application, and thus potentially bypass at least some 
perimeter defenses.  

   •      Collateral Damage .      Attacks on applications sharing the same compute, storage, 
or other resources can indirectly impact service latency and service reliability of 
other applications because shared resources are consumed by the attack, and 
hence are unavailable to other applications.     

   7.8.5    Recommendations 

 The essential and common characteristics of cloud computing introduce some new 
security risks and expand some existing risks compared with traditional deployment 
models. Cloud consumers should work with their IaaS service provider to assure that 
adequate perimeter security defenses protect their applications and assure that best 
security practices and robust security policies are in place. Readers should refer to cloud 
security references like  [ENISAa] ,  [ENISAb] ,  [NIST - D] ,  [CSAa] ,  [CSAb] ,  [CSAc]  and 
 [CSAd]  for further information.   

   7.9    ARCHITECTING FOR ELASTIC GROWTH AND DEGROWTH 

 Given both architectural limitations on elastic growth slew rate and business needs to 
control operating expenses, cloud consumers must decide how much spare capacity to 
keep online for variations in offered load and what high - water threshold conditions 
should trigger elastic growth events. Likewise, cloud consumers should also decide 
what low water event thresholds should trigger elastic degrowth events to release capac-
ity. Thus, application architects should rethink their application architectures around 
the following assumptions:

    •      Application consumption of cloud resources (CPU, memory, and storage) should 
grow and shrink horizontally and/or vertically in reasonably quantized units (e.g., 
individual VM instances) across a reasonable range of offered loads.  

   •      Applications should be architected so that independent application instances can 
be started in other data centers (i.e., cloud bursting) when offered load exceeds 
range of supported horizontal and vertical growth.  

   •      Applications should trigger the cloud control software based on growth/degrowth 
policies. Alternatively, applications should make capacity monitoring informa-
tion available to the cloud in order to allow the cloud to apply automatic elasticity 
policies.  
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   •      Applications should generate suitable management events (e.g., SNMP traps, log 
records) when triggering elastic growth or degrowth events.  

   •      Cloud - based applications must implement robust overload controls to assure that 
if offered load exceeds the online capacity of any particular application instance, 
then the excess load is appropriately managed rather than simply allowing service 
latency and reliability to degrade for all users, and risking eventual service col-
lapse and crash.     

    

   

 

 

 



164

     Service orchestration   is a key component in the delivery of cloud services that meet 
customer and business requirements, particularly those requirements associated with 
reliability, availability, and latency. The chapter will begin with a defi nition of service 
orchestration. The chapter goes on to discuss how policy management and cloud 
management support service orchestration, the role service orchestration plays in miti-
gating some risks that could arise in the cloud computing environment, and ends with 
a summary.  

8.1 SERVICE ORCHESTRATION DEFINITION 

 Service orchestration entails the linking together of architecture, tasks, and tools neces-
sary to initiate and automatically manage a service. In the cloud environment, service 
orchestration includes linking together and automating tasks based on work fl ows, 
measured data, and policies, with the purpose of providing a service that meets the 
business needs based on the associated SLA if applicable. Based on U.S. National 
Institute of Standards and Technology standards (NIST)  [NIST - C] , service orchestration 
is responsible for the coordination and management of cloud components to provide 
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services that meet customer business requirements. That NIST defi nition of service 
orchestration implies a large scope that includes provisioning and managing services 
and assets, as well as scenarios such as rapid elasticity, cloud bursting, and disaster 
recovery. This service orchestration analysis will focus on the reliability, availability, 
and latency related aspects of service orchestration. Service orchestration encompasses 
the following functions:

 •      On - Demand Self - Service .      On - demand self - service as explained in Section  1.1.1 , 
 “ On - Demand Self - Service, ”  is an essential cloud characteristic responsible for 
managing server and storage resources. Service orchestration provides the infra-
structure, processes, and tools to support requests made to add or remove VM 
instances (or other software modules) or resources. In addition to the instantiation 
of a new application instance and its hardware resources, service orchestration 
supports the confi guring of the network resources (i.e., bandwidth and virtual 
private network links), routing confi guration, and the setting up of the fi rewall 
connections. Proper confi guration of the application, its resources, and interfaces 
has a direct bearing on the reliability and availability of the application ’ s service.  

 •      Resource Management .      Resource (or asset) management is responsible for the 
allocation and management of the resource pools discussed in Section  1.1.3 , 
 “ Resource Pooling, ”  for use by the software applications. Resource management 
includes assuring the application has suffi cient resources, such as CPU, memory, 
and disk storage to meet its needs and responding to requests from on - demand 
self - service for the addition or removal of resources. Resource management 
is responsible for mapping virtual resources allocated by the applications onto 
the physical entities as discussed in Section  6.7 ,  “ Mitigating Hardware Failures 
via Virtualization. ”  Resource management also include auditing for allocated 
resources that have gone unused for an extended period of time and that can be 
returned to the available resource pool. The allocation of suffi cient resources, as 
well as the reporting of insuffi cient resources, has a direct impact on the avail-
ability and reliability of a service.  

 •      Service Monitoring .      Service monitoring is responsible for the collection and 
reporting of measurements of the  key quality indicator s ( KQI s) and  key perfor-
mance indicator s ( KPI s). KQIs and KPIs can provide the basis for measured 
service as discussed in Section  1.1.5 ,  “ Measured Service, ”  and serve as input for 
policies that are used to help manage capacity and measure service reliability. 
Although service monitoring does not directly impact service reliability and 
availability, it is an important component in measuring and reporting on system 
reliability to ensure conformance to SLAs. Measured service can be coupled with 
thresholds to trigger the growing of application instances or resources, which 
in turn will contribute to a positive impact on system availability (i.e., meeting 
higher capacity needs) and reliability (i.e., ensuring there are suffi cient resources 
to successfully manage requests).  

 •       Service Distribution.      Service distribution, supported by policy management, is 
responsible for managing load distribution across the servers in the solution, 
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taking into account capacity, regulatory, latency, and security considerations. 
Distributing traffi c in a manner that best meets customer requirements for service 
availability and reliability is an important responsibility for service orchestration. 
Service distribution includes ensuring the load is distributed to available applica-
tion instances and rerouting if that instance is not able to manage its load due to 
failure or overload or due to the addition or deletion of application instances that 
can manage the load. In this way, it is a key factor in service availability, that is, 
making sure that all requests are successfully sent to a functioning application 
instance.

 •       Service Provisioning.    Service provisioning is responsible for confi guring sub-
scribers and services to particular components in the cloud solution, taking into 
account locations that support low latency (e.g., locating the service near to the 
subscriber), high availability (e.g., provisioning a primary and secondary site), 
and disaster recovery (e.g., assigning primary and secondary sites that are suf-
fi ciently far apart that no single disaster will impact both sites). Incorrect service 
provisioning can lead to service availability and reliability issues, as well as 
potential latency problems.    

 Service orchestration can also facilitate the automation of support services, such as 
billing, but that is outside the scope of this analysis.  

8.2 POLICY -BASED MANAGEMENT 

 Policy - based management   is a key component in a service orchestration framework 
that provides a means to allocate resources based on defi ned policies. Policy - based 
management architecture and its uses have been specifi ed in various IETF RFCs: 
 [RFC3060]  defi nes the policy information model, and  [RFC3198]  defi nes the policy 
management terminology and points to specifi c RFC references defi ning the various 
components and usages. Operational policies provide concrete specifi cations and input 
for operating, administering, and maintaining the cloud. This infrastructure that takes 
policies as an input and provides support for managing cloud services will be referred 
to as policy - based management. 

  Distributed Management Task Force  ( DMTF ) policies and constraints are a useful 
way to defi ne the cloud capabilities that a cloud service provider is offering. Per DMTF, 
the cloud consumer works with the  cloud service provider  ( CSP ) to customize a set of 
policies that will accompany the instantiation of the consumer ’ s applications. The CSP 
provides a catalog of constraints, rules, and policies offered as part of the service. The 
cloud consumer can then request a customization of these constraints, rules, and policies 
in their instantiation request to meet their specifi c needs. The policies will then help 
govern the management of the cloud consumer ’ s application. The CSP or the cloud 
consumer can also make changes once the service is running if the changes fi t into the 
agreements made before instantiation of the service. The specifi cs are spelled out in 
 [DSP0102] . 
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 Policy - based management takes input from Service Level Requirements (SLRs) 
(included in Service Level Agreements (SLAs)) and measurements (e.g., defi ned KQIs 
and KPIs) combined with associated thresholds on those measurements to create poli-
cies. Rules are constructed and input to the policy management infrastructure to describe 
the triggers and subsequent actions based on that policy. For example, if the SLR stipu-
lates 100 successful transactions per second per VM and the associated measurements 
have been indicating 200 transactions per second per VM consistently over a period of 
time, then a policy defi ned to comply with the 100 successful transactions per second 
may automatically trigger the creation of a new VM instance to manage the additional 
traffi c or issue a report (or alarm) to the customer to alert the customer to manually 
request more capacity through a web server interface. This manual request by the cus-
tomer would then result in the creation of a new VM instance. 

 Figure  8.1  shows an example of a service orchestration workfl ow that manages the 
scaling or descaling of VMs based on usage data expressed by KPIs/KQIs. KPI/KQI 
data based on defi ned measurements and SLRs are inputs into policy management. 
Policy management uses policies to monitor data collected from the applications and 
issues alerts to cloud management as policies dictate (i.e., based on measurements 
exceeding a threshold dictated by an Service Level Requirement or Agreement). Cloud 
management (discussed in Section  8.3 ,  “ Cloud Management ” ) determines whether the 
alerts require confi guration changes, and if so, activates the appropriate mechanisms to 
add or remove VM instances from the cloud solution or to send a message to the cloud 
consumer to make a request to do so.   

   8.2.1    The Role of SLRs 

 Service - level requirements defi ne the service expectations of a customer. SLRs are 
often included in SLAs, providing a means for the service provider and customer to 

     Figure 8.1.     Service Orchestration.  

Policy
Management

Cloud
Management

KQIs/KPIs SLRs

Alerts

Application
Scaling/Descaling 
Commands

Policy Input

Application
Measurement

Data
Policies

Service Orchestration

Cloud
Monitoring

Cloud Data 
Center

Cloud Data 
Center



168 SERVICE ORCHESTRATION ANALYSIS

agree upon and document the level of customer services to be supported, their quality 
goals, and the actions to be taken if the SLA terms are violated. Metrics, such as 
KQIs, are used to quantitatively measure service characteristics, such as transactions 
attempted, failed transactions, and so on that can then be monitored to validate product 
compliance to those expectations. Policies are built to report on or trigger events upon 
reaching or exceeding the customer service requirements based on the associated 
KQIs. This ability to defi ne and ensure compliance to customer requirements is a key 
component in providing a high level of service to the customer in compliance with 
the SLAs.  

8.2.2 Service Reliability and Availability Measurements 

 Sophisticated enterprises and service providers will defi ne key quality indicator metrics 
that can be quantitatively measured for the most important aspects of service offered 
to users. Quantitative targets will be set for each of these KQI metrics, and bonus or 
incentive payments to enterprise or service provider staff may be tied to achieving those 
KQI performance targets. KQIs may be tied to SLA ’ s with service providers, enter-
prises, or entities representing end users, and liquidated damages may be liable if KQI 
commitments are not met. 

 Service quality KQI ’ s often include service reliability, service latency, or service 
availability metrics, but the KQI may be expressed in service specifi c language. For 
example, wireless telephony service providers often use service accessibility  (probabil-
ity that a user call attempt will succeed in an acceptable amount of time with acceptable 
voice quality) and service retainability  (probability that a call will continue with accept-
able voice quality until explicitly released/ended by one of the call participants). See 
Section  3.8.2 ,  “ Service Quality Metrics, ”  for a discussion on these metrics. 

 Careful analysis of both the metric defi nition and the particulars of the tools and 
techniques that produce the quantitative results can often reveal the details necessary 
to precisely specify the service reliability and availability requirements that should be 
applied. For example, careful analysis of properly designed service KQI metrics should 
reveal precisely which protocol responses failed service requests and the portion of 
responses that could exceed the maximum acceptable service latency. These precise 
and quantitative defi nition details should be captured in reliability requirements for the 
virtualized application. See Section  13.7.1  for more details on measurements. 

 Since measurements represent key input for service orchestration, it is important 
that the measurements are well - defi ned and agreed upon by the cloud consumer. Poli-
cies can be built using these measurements and thresholds associated with them to 
trigger actions by cloud management.   

8.3 CLOUD MANAGEMENT 

 Cloud management   is another critical component used by service orchestration. As an 
interface to policy - based management, cloud management is responsible for growing 
and degrowing the confi guration based on automatic (e.g., policy - based triggers) or 
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manual input (e.g., web interface for adding/removing an application). Two of the 
mechanisms used for scaling and descaling are rapid elasticity and cloud bursting. 

8.3.1 Role of Rapid Elasticity in Cloud Management 

 One of the roles of policy management is the triggering of defi ned actions to mitigate 
risks associated with exceeding engineered limits (e.g., service capacity or latency). 
Rapid elasticity offers the ability to add or remove cloud resources (VMs, storage 
devices, etc.) triggered by manual input (i.e., request for a new instance of a VM or 
application from a web - based GUI) or automatically based on a software trigger (e.g., 
reaction to a policy decision). Rapid elasticity may be used to mitigate the impact of 
service overload situations by rapidly adding and provisioning VM instances to manage 
increases in capacity through redistribution of the load to new VM instances. Con-
versely, rapid elasticity can scale back VM instances when there is much less traffi c 
than supported by the current VM confi guration. Note that policies may include infor-
mation on where to locate the new VM instances based on regulatory issues, standards, 
or proximity to users to avoid increases in latency to ensure compliance to those require-
ments or standards.  

8.3.2 Role of Cloud Bursting in Cloud Management 

 Cloud bursting   (discussed in Section  7.4 ,  “ Cloud and Capacity ” ) enables additional 
service capacity to be added outside the data center. An example of cloud bursting is 
when services running in a private cloud no longer have suffi cient resources to meet 
their computing needs within the private cloud and must expand into a public cloud 
in order to obtain those resources. Service federation must be provided to include the 
necessary mechanisms to broker information on security - related identities, identity 
attributes, and authentication among the different security realms in the private and 
public clouds. Since there are security risks in expanding into another cloud, particu-
larly a public cloud, this mechanism is often recommended for services that do not have 
to deal with sensitive information. There may also be risks of incompatibility in the 
public cloud infrastructure, making it more diffi cult for the service to run outside its 
private cloud. These disadvantages must be weighed against the promise of additional 
resources for the rare times when resources might be temporarily required. Figure  8.2  
shows an example of how VMs in an Enterprise private data center are scaled into the 
public cloud for additional capacity.     

8.4 SERVICE ORCHESTRATION ’S ROLE IN RISK MITIGATION 

 Service orchestration provides a framework for managing compliance to customer 
expectations for reliability, latency, and security regulatory compliance through clear 
defi nition of customer requirements, careful service monitoring against those require-
ments, and mitigation actions when noncompliance issues arise. The following sections 
will discuss some of the risks and mitigations of those risks. 
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   8.4.1    Latency 

 There is the risk that traffi c is directed to sites that are so heavily loaded that they cannot 
meet the service latency requirements. To identify latency issues, policies can be 
defi ned that use samples of transaction latency over a period of time to algorithmically 
identify trends that exceed the allowable rates defi ned in SLR ’ s. If latency issues are 
identifi ed, then these latency risks can be mitigated by:

    •      Using load balancing algorithms that attempt to route service to the server/data 
center closest to the user.  

   •      Increasing bandwidth allocation to the servers with a heavy traffi c load.  

   •      Expanding service with rapid elasticity taking into account location of the 
primary users.  

   •      Collocating primary data storage close to the accessing servers to minimize data 
access time.  

   •      Collecting and reporting latency data so that any increases in latency can be 
monitored and managed.    

 Through careful monitoring and managing the latency, risks can be greatly reduced.  

   8.4.2    Reliability 

 The reliability of an application in the cloud environment can be compromised by 
risks associated with the sharing of resources, as well as the dynamic nature of its 
scaling and descaling. Policy management can help mitigate risks by actively monitor-
ing key reliability indicators and providing escalation triggers and procedures when 
thresholds of key reliability indicators are exceeded. One of these key reliability indica-
tors is  defects per million  ( DPM ). SLR ’ s will generally indicate the maximum number 

     Figure 8.2.     Example of Cloud Bursting.  
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of failures allowed over a period of time based on service expectations. A policy can 
then be defi ned, indicating that when a particular category of defects (i.e., failed trans-
actions) reaches a certain limit over a period of time (e.g., 30 minutes), a critical alarm 
is generated. Service orchestration is responsible for taking this reliability policy as 
input, monitoring the system for defi ned defects, and issuing an alarm when the limit 
has been reached or exceeded. Reliability risks can be mitigated by moving traffi c away 
from the failing component when it has neared the limit but before it has exceeded the 
limit. High availability mechanisms could execute a failover of the active VM instance 
to another VM in its failure group if the number of failures reaches a particular limit. 
Either way, policies could be used to trigger preventative actions based on service 
monitoring of events and data trends.  

8.4.3 Regulatory

 In the cloud environment, especially with automated mechanisms, such as rapid elastic-
ity, there is a possibility that applications are scaled into areas that are outside regulatory 
boundaries. Rules and constraints need to be defi ned in policies to ensure compliance 
to regulatory requirements. The Open Data Center Alliance provides regulatory policy 
management guidance to help cloud consumers assess the regulatory requirements 
associated with their use of cloud services  [ODCA] . Policy management can be used 
to mitigate this risk of regulatory noncompliance by defi ning policies that check for 
adherence to the rules and constraints established by the regulatory requirements and 
ensure compliance when selecting a site for VM instantiation. When architecting a 
system, it is important to understand the regulatory conditions around that service and 
countries it is being operated in to make sure that the system is properly confi gured 
and managed through the use of policies to meet those conditions. Rules for server 
location, data storage, and service expansion should be built into the policies to ensure 
that they do not fall outside of the bounds established and to trigger alerts or the 
inability to install VMs or data storage devices on servers that do not meet the regula-
tory requirements.  

8.4.4 Security

 Although outside the scope of this analysis it is important to note concerns around 
security. In the virtualization and cloud environments, there are additional security 
concerns beyond those of traditional systems due to multitenancy and rapid elastic-
ity. In the case of multitenancy, it is important to manage access to the tenants and 
maintain their isolation from each other. In the case of rapid elasticity, it is important 
that new instances of the applications still meet the security requirements estab-
lished between the cloud service provider and the customer. As with regulatory condi-
tions, security requirements must be well understood when confi guring a system, and 
security policies and constraints should be created to assure compliance to those secu-
rity requirements. 
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 DMTF provides the following examples of security policies in  [DSP0102] :

 •       Access Control.      Only specifi ed cloud users have access to a particular service 
instance. Policies dictate which users can modify that service instance and where 
and when it can be deployed.  

 •       Network Security Policies.      These policies indicate how a service instance con-
nects with other external service instances or resources (e.g., via fi rewall rules 
or packet inspection).  

 •        “ Scope ”  of the Security Policies.      These policies specify in which regions or 
zones the instances are allowed to function.    

 These examples, as well as the supporting information in  [DSP0102] , provide archi-
tectural guidance in setting up a security infrastructure that can mitigate many of the 
risks found in the cloud environment. Service orchestration also includes service federa-
tion, particularly for cases in which cloud bursting is allowed and manages the imple-
mentation of the mechanisms needed to broker authentication across security realms as 
mentioned in Section  8.3.2 .   

8.5 SUMMARY 

 Service orchestration provides a framework for managing the complexity of the cloud 
environment through policies, data monitoring, automation, and cloud management to 
ensure compliance to customer requirements for availability, reliability, and latency. An 
effective service orchestration framework should consist of the following:

 •       Mechanisms that collect and monitor measurement data against thresholds . The 
thresholds may consist of multiple levels indicating how close the number of 
events within a time period is tracking against customer limits (e.g., percent 
failed transactions within a particular measurement period). Both the defi nition 
of the measurements as well as the thresholds must be agreed upon by the cloud 
provider and cloud consumer.  

 •       Policy management system  that includes a well - designed information model 
that supports the defi nition of rules, conditions, and actions to be taken. The 
system should be fl exible enough to support complex rules involving multiple 
conditions and actions. Although template policies may be available specifi c 
service policies must also be agreed upon by the cloud provider, as well as the 
cloud consumer.  

 •       Cloud management system  that can perform, manage, and report on the actions 
dictated by the policy management system. 

 •       Automation  should be a key attribute of the service orchestration framework. 
Automation is key to minimizing operational complexity — and the associated 
procedural errors — as well as improving reliability and availability for those 
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cases in which policies resulted in actions that directed traffi c away from VM ’ s 
that were experiencing unacceptable service performance.    

 As part of the monitoring and management of the service, service orchestration is also 
able to mitigate some of the risks introduced by the highly dynamic cloud environment. 
Section  11.3.6 ,  “ Service Orchestration Considerations, ”  will expound upon these miti-
gation techniques and provide recommendations for maximizing reliability, availability, 
and latency using service orchestration.    
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           Traditional high availability arrangements deploy suffi cient local excess capacity to 
promptly recover service following a single hardware or software failure, such as failure 
of a fi eld replaceable hardware unit. Hardware must be operated in a physical location 
like a data center, and physical locations are inherently subject to catastrophic or force 
majeure events, like fi res, earthquakes, fl oods, tornadoes, acts of war (including terror-
ism), and so on. These disastrous events can render some or all of the equipment 
deployed at the impacted site unavailable or inaccessible. The best practice to mitigate 
the service continuity risk of disaster events is to deploy redundant system confi gura-
tions to a site that is geographically distant from the primary site to assure that no single 
disaster event will impact both sites. Geographically separated system redundancy is 
called geographic redundancy, or simply georedundancy. 

 The common cloud characteristic of geographic distribution is necessary but not 
suffi cient to support georedundancy and disaster recovery. This chapter begins with an 
explanation of the differences between georedundancy and simple geographic distribu-
tion. Traditional disaster recovery principles are introduced, followed by a discussion 
of how virtualization and cloud computing offer improved options for georedundant 
disaster recovery. The chapter concludes with a discussion of potential service avail-
ability benefi ts of disaster recovery that are sometimes ascribed to georedundancy, and 
how these corollary benefi ts are impacted by virtualization and cloud computing.  

9
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9.1 GEOGRAPHIC DISTRIBUTION VERSUS GEOREDUNDANCY 

 Geographic distribution can be the basis for ad hoc or formal disaster recovery plan-
ning, but geographic distribution alone is insuffi cient to assure timely service recovery 
from disaster events that render a site unavailable or inaccessible. Georedundancy has 
two additional key requirements beyond simple geographic distribution of systems:

   1.     Plans and mechanisms are in place to rapidly migrate service away from a failed 
or impacted data center to an alternate data center in the event of catastrophic 
site failure. For example, application data must be securely stored at a geo-
graphically separated site and arrangements must be in place to assure that fresh 
backup data can be promptly restored to the recovery site. 

  2.     Suffi cient excess capacity is deployed so that the total engineered traffi c load 
can be served indefi nitely with acceptable service quality when any single data 
center is unavailable.     

9.2 TRADITIONAL DISASTER RECOVERY 

   Traditional disaster recovery strategies were organized by the SHARE group  [SHARE]  
into tiers offering better (i.e., shorter)  recovery time objective s ( RTO ) and  recovery 
point objective s ( RPO )  [TIPS0340]  [Wikipedia]:

 •      Tier 0: No Offsite Data .      Tier 0 enterprises have no disaster recovery plan and 
no saved data. Recovery time from disaster may takes weeks or longer and may 
ultimately be unsuccessful.  

 •      Tier 1: Data Backup with No Hot Site .      Tier 1 enterprises maintain data backups 
offsite but do not maintain a hot site. Backup data must typically be physically 
retrieved (so - called pickup truck access method, PTAM), and thus signifi cant 
time is required to access backup media. Since Tier 1 enterprises may not main-
tain their own redundant servers to recover service onto, time may be required 
to locate and confi gure appropriate systems.  

 •      Tier 2: Data Backup with a Hot Site .      Tier 2 enterprises maintain data backups 
as well as a hot site, and thus recovery times are faster and more predictable than 
in Tier 1.  

 •      Tier 3: Electronic Vaulting .      Tier 3 enterprises maintain critical data in an elec-
tronic vault so that backup data is network accessible to the hot site rather than 
requiring backup media to be physically retrieved and transported to the hot site.  

 •      Tier 4: Point - in - Time Copies .      Tier 4 enterprises maintain more timely point - in -
 time backups of critical data so that more timely backup data is network acces-
sible to the hot site, thus reducing the RPO.  

 •      Tier 5: Transaction Integrity .      Tier 5 solutions assure that transactions are con-
sistent between production systems and recovery sites. Thus there should be little 
or no data loss from a disaster.  
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 •      Tier 6: Zero or Little Data Loss .      Tier 6 solutions have little or no tolerance for 
data loss and thus must maintain the highest level of data consistency between 
production and recovery sites, including data not explicitly protected via transac-
tions. Techniques like disk mirroring and synchronous I/O are generally deployed 
by Tier 6 enterprises to minimize RPO.  

 •      Tier 7: Highly Automated, Business - Integrated Solution .      Tier 7 solutions auto-
mate disaster recovery of Tier 6 solutions, thus shortening the RTO and with 
minimal RPO.    

 Each traditional tier successively will support increasingly better recovery point or 
recovery time objectives but at an additional cost for the business. 

 A geographically distant alternate site to recover service to following a disaster is 
obviously a critical ingredient of georedundancy. Traditional recovery site options are 
broadly classifi ed as follows:

   1.     Ad Hoc Site .        enterprise can simply plan to fi nd a new facility after a disaster 
occurs, and have the replacement equipment delivered and installed at that new 
facility. This ad hoc strategy naturally yields the longest service disruption fol-
lowing a disaster.  

  2.     Cold Recovery Site .      ISO/IEC 24762:2008 [ISO24762] defi nes cold recov-
ery site   as a facility  “ with adequate space and associated infrastructure — 
power supply, telecommunications connections, environmental controls, etc
 — to support organization  Information Communication Technology ( ICT ) 
systems, which will only be installed when  disaster recovery ( DR ) services are 
activated. ”   

  3.     Warm Recovery Site .      ISO/IEC 24762:2008 [ISO24762] defi nes a warm recov-
ery site   as a facility  “ that is partially equipped with some of the equipment, 
computing hardware and software, and supporting personnel, with organiza-
tions installing additional equipment, computing hardware and software, and 
supporting personnel when disaster recovery services are activated. ”   

  4.     Reciprocal Backup Agreement   .      Some governmental agencies and industries 
have mutual aid agreements   to support each other in time of need (i.e., disaster 
recovery).

  5.     Service Bureau .      Some companies offer processing capabilities for both ordi-
nary and disaster recovery needs. Note that in the context of cloud computing, 
service bureaus might now be said to offer  “  Disaster - Recovery - as - a - Service  ”  
( DRaaS ).

  6.     Hot Site .      ISO/IEC 24762:2008 [ISO24762] defi nes hot recovery site   as a facil-
ity hot site , that is fully equipped with the required equipment, computing 
hardware and software, and supporting personnel, and fully functional and 
manned on a 24    ×    7 basis so that it is ready for organizations to operate their 
ICT systems when DR services are activated. ”  Note that cloud computing data 
centers are generally hot sites.    
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 Traditional geographic redundancy typically refers to an alternate data center that has 
suffi cient equipment and facilities to promptly serve the critical traffi c load with accept-
able service quality and is separated far enough from the primary site to be unaffected 
by any single catastrophic event. Thus, georedundancy generally refers to a hot site 
somewhere with some prior arrangements to rapidly recover service in hours or minutes, 
rather than warm, cold, or ad hoc disaster recovery plans that may take weeks or months 
to recover service.  

9.3 VIRTUALIZATION AND DISASTER RECOVERY 

 To assure rapid recovery time objectives with traditional, nonvirtualized deployments, 
it was generally necessary to deploy similar or identical hardware confi gurations — often 
with identical software releases installed and confi gured — to georedundant recovery 
sites. This inherently constrained the utility of the georedundant equipment because 
distinct hardware resources might be necessary for each application to be protected. 
For example, protecting application A1 in site 1 and B2 in site 2 on a third recovery 
site might require redundant instances of both systems (A3 and B3) on a third recovery 
site, because although no single disaster could impact both A1 and B2, both of these 
applications could not individually be rapidly and reliability recovered onto the same 
physical hardware. 

 Virtualization simplifi es traditional disaster recovery by relaxing the compatibil-
ity requirements on hardware deployed to the recovery site, thus making it feasible 
for a virtualized pool of resources operated by a service provider to meet the disaster 
recovery needs of many enterprises. In traditional georedundancy, the hardware on the 
recovery site must be well matched to the primary site to assure that identical applica-
tion and platform software can run with suffi cient capacity to carry the entire traffi c 
load served by the impacted site with acceptable service quality, reliability, and latency. 
With virtualization, the hypervisor masks minor differences in hardware confi gurations 
between the specifi c hardware confi guration of both the primary and recovery system 
hardware. Thus, virtualization reduces the hardware compatibility requirements for 
recovery sites, which can make it easier to select and provision disaster recovery sites, 
even simplifying ad hoc recovery strategies. 

 Just as virtualization permits applications to be consolidated onto shared hardware 
resources, virtualization facilitates sharing of hardware for disaster recovery. Thus, 
although suffi cient hardware capacity must still be engineered onto the georedundant 
site, virtualization enables those hardware resources to fl exibly support disaster recov-
ery of several critical applications from the same or perhaps from several different data 
centers, minimizing the need for nonshareable application - specifi c hardware. As a 
result, the capital expenses associated with confi guring a georedundant site are reduced, 
along with the operating expenses for data center fl oor space, cooling, and so on. 

 While live migration is obviously an infeasible option for general disaster recovery 
because one does not typically have the luxury of advance warning before catastrophic 
site failure, recovery times might be shortened by activating paused or snapshot 
VM images on the recovery site rather than booting applications from scratch. Even 
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if applications are booted from scratch for disaster recovery, the RTO onto virtual-
ized platforms should be at least comparable with the RTO onto traditional cold standby 
confi gurations. If an active/standby or active/active georedundancy arrangement is 
used, then the RTO for native and virtualized deployments should be essentially 
the same.  

9.4 CLOUD COMPUTING AND DISASTER RECOVERY 

 Some public clouds are the modern version of  “ service bureaus ”  discussed in Section 
 9.2 ,  “ Traditional Disaster Recovery ” ; private clouds can be a modern instantiation of 
 “ hot sites ”  for disaster recovery, and community clouds may offer similar features as 
 “ reciprocal backup agreements. ”  By prearranging for disaster recovery as a service, 
formal plans can be put in place to assure that resources necessary to recover service 
can be allocated in the same facility that enterprise data is vaulted in so that wide area 
network (WAN) bandwidth bottlenecks between the data site and the new service site 
do not prolong RTO. In addition, clouds offer storage services, including electronic 
vaulting, so enterprises can eliminate the burden of moving and managing physical 
media containing backup data. 

 Alternately, enterprises can consciously plan to rely on the rapid elasticity and 
geographic distribution offered by cloud service providers to recover users impacted 
by a site disaster by redirecting their traffi c to one or more geographically separated 
data centers. While this is often technically feasible, successful disaster recovery plans 
must address the following requirements:

 •       All data from primary site must be vaulted or replicated to a remote site . If the 
recovery site is not the same as the vault/replication site, then recovery data must 
traverse a WAN that could slow disaster recovery if the data set is large.  

 •       Service capacity on recovery site(s) must be able to grow fast enough to meet 
RTO objective , including time to import necessary data from electronic vault or 
other repository. For session - oriented services, it may take signifi cant processing 
effort to authenticate and authorize each impacted user individually, as well as 
effort to (re)build session context to recover service. While under normal cir-
cumstances, users may log on to the application across a broad window of time —
 thereby keeping the logon/session setup load modest — disaster recovery is likely 
to prompt a very large number of users to attempt to log on/recover to the recov-
ery site essentially simultaneously. As a result, it may be necessary to engineer 
peak capacity to support the unusually high rate of user logons and session setups 
in disaster recovery scenarios. As described in Section  4.9 ,  “ Expectations of IaaS 
Data Centers, ”  the Open Data Center Alliance defi nes four classifi cations of 
infrastructure as a service (IaaS) providers, and the recoverability expectations 
from  [ODCA - SUoM]  are given in Table  9.1 .    

 •       Mechanisms must be in place to redirect user traffi c to recovery site . These 
mechanisms should be transparent to users and require no user changes or recon-
fi guration of user programs.  
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 •       Nonservice - impacting migration back to recovered primary site shall be pos-
sible . While there may be a service impact due to the disaster event itself 
and the subsequent georedundant recovery, there should be little or no service 
impact for the planned and graceful service migration back to the repaired 
primary site. 

 •       Periodic (e.g., annual) disaster drills shall be possible to verify that disaster 
recovery mechanisms and plans meet RTO and RPO expectations, and that 
graceful service migration back to the primary site has minimal impact on user 
service .    

 Since rapid elasticity, on - demand self service, and geographic distribution are charac-
teristics of cloud computing, some enterprises can plan to rely on ad hoc recovery from 
disasters. In addition to dramatically increasing the risk that service itself and enterprise 
data will ultimately not be successfully recovered, the recovery times themselves will 
inevitably be signifi cantly longer than if formal disaster recovery plans had been put 
in place and tested prior to the disaster event. Fundamentally, since ad hoc recovery 
cannot be tested and debugged effectively before a real disaster event, enterprises that 
opt for ad hoc disaster recovery inevitably rely simply on the best efforts of their staff 
in the very stressful and chaotic postdisaster period to salvage enterprise service and 
data — and often the enterprise itself — following a disaster event. 

 The cloud computing ecosystem assures that a wide variety of cloud computing 
service providers enable enterprises to select data storage options that meet the enter-
prise ’ s RPO requirements and prearrange for emergency resource availability to meet 
RTO requirements. Cloud - based disaster recovery strategies do not eliminate the need 

  TABLE 9.1.     ODCA  IaaS Recoverability Objectives   [ODCA - SUoM]   

   SLA Level     Description  

  Bronze    Reasonable efforts to recover the IaaS service (e.g., access to boot 
volumes and ability to reboot the cloud subscriber ’ s virtual environment 
again) with up to 24 hours of data loss (e.g., loss of boot disk updates 
due to no intraday backup), and up to 24 hours of recovery time. No site 
disaster recovery (DR). Note that the focus is on recoverability of the 
underlying service, after which cloud subscriber still has their own 
recovery to complete. 

  Silver    Provisions made to recover within 4 hours, with up to 24 hours of data 
loss. (No DR for full site disaster.)  

  Gold    Enhanced recovery capability to recover within 2 hours for hardware 
failure, 24 hours for site failure, and no more than 4 hours of data loss.  

  Platinum    Highest recovery focus to provide as close to continuous nonstop 
availability as possible, aiming for < 1 - hour recovery and  < 15 - minute 
data loss even in the event of full site failure. 

Source :   Open Data Center Alliance.  ©  2011 Open Data Center Alliance, Inc. All rights reserved. 
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for enterprises to execute periodic (e.g., annual) disaster drills to assure that disaster 
recovery works as planned and that RTO and RPO requirements are met.  

9.5 GEOREDUNDANCY RECOVERY MODELS 

 Georedundancy is activated by detecting a failure at a primary site and redirecting 
impacted traffi c to a redundant site that is confi gured and ready to recover service 
for the impacted traffi c. There are fundamentally three georedundancy recovery 
strategies:

 •      Manually Controlled Recovery   .      This is the traditional disaster recovery strategy: 
a business leader formally declares a disaster and a well - defi ned disaster recovery 
plan is executed to manually transition operations to a recovery site.  

 •      Server - Driven Recovery   .      Redundant servers or other systems monitor the health 
of servers and upon detecting failure of a system serving user traffi c a server 
automatically takes actions to recover service to a redundant server instance 
to mitigate service impact without requiring manual action by maintenance 
engineers.

 •      Client - Initiated Recovery   .      The client application, device, or user detects the 
failure and explicitly initiates a recovery action. A simple example of client initi-
ated recovery is a human user detecting a stuck or nonresponsive web server, 
then clicking  “ cancel ”  on their browser followed by  “ reload ”  to recover from 
a web server failure which hopefully retries the request to web server that is 
available. Readers can easily imagine client application architectures that auto-
mate the failure detection and automatic service recovery to an alternate applica-
tion instance (i.e., a different IP address), which is located in a different data 
center.     

9.6 CLOUD AND TRADITIONAL COLLATERAL BENEFITS 
OF GEOREDUNDANCY 

 Some enterprises assume that traditional georedundancy offers several benefi ts beyond 
disaster recovery: reducing planned service downtime; mitigating catastrophic element 
failure; and mitigating uncovered (i.e., failures that are not detected and recovered) and 
duplex element failures. While these traditional benefi ts are feasible with cloud deploy-
ments, they are no longer necessarily tied to georedundancy. Let us consider each of 
the assumed collateral benefi ts of georedundancy: 

9.6.1 Reduced Planned Downtime 

 Major activities, such as growing or degrowing hardware confi gurations of systems or 
physically moving equipment, have less risk of impacting service if traffi c is gracefully 
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drained from the systems prior to beginning the activity. Orderly migration of traffi c 
away from the target site to the georedundant site is a traditional way to quiesce a site 
so it can be taken offl ine prior to executing planned activities. Obviously, there is far 
less risk that a successful or failed activity will disrupt user service if there is no traffi c 
fl owing through the element when the activity is performed. Virtualization and cloud 
computing offer options for minimizing planned downtime without requiring georedun-
dancy; this is discussed in detail in Chapter  5 ,  “ Reliability Analysis of Virtualization. ”   

9.6.2 Mitigate Catastrophic Network Element Failures 

 Occasionally a system will experience a catastrophic or duplex failure (i.e., both redun-
dant units are simultaneously unavailable) that defeats high availability mechanisms 
and will require hours to repair. For example, water — even rodent urine — in a rack of 
equipment might physically damage multiple hardware units in a single system, thus 
overwhelming the high availability design of the system and requiring a service impact-
ing hardware repair before service can be restored. Traditionally, if service can be 
recovered to a georedundant instance of the impacted network element with signifi -
cantly less overall impact than repairing the damaged network element, then georedun-
dant recovery may be a good option. Note that traffi c is sometimes migrated back to 
the primary system after it is repaired, so the potential service impact of eventual traffi c 
migration after repair should be considered when deciding whether or not to engage 
georedundancy to mitigate an element failure. Cloud computing dramatically changes 
the economics of hardware redundancy arrangements by making it possible to distribute 
individual instances of redundancy to different hypervisors on physical servers that are 
separated within a data center far enough that nothing short of a catastrophic site failure 
would impact all redundant module instances of a single system. For example, one can 
imagine a roof leak compromising a single chassis or rack of equipment, thus rendering 
a traditional system unavailable; but one cannot imagine a single roof leak simultane-
ously, compromising both redundant application instances running on hypervisors on 
physical hardware at opposite sides of the same data center. For example, Amazon Web 
Services uses the concept of  “ availability zones ”  to mitigate the risk of catastrophic 
failures within a data center by assuring that each zone is physically distinct with 
independent networking, power, and cooling infrastructure  [AWS08] .  

9.6.3 Mitigate Extended Uncovered and Duplex Failure Outages 

 Some types of properly confi gured solutions can even be engineered to leverage geo-
redundancy to mitigate more common uncovered and duplex failure downtime, thereby 
boosting overall service availability seen by users. Specifi cally, automatic failure detec-
tion and recovery by client applications can be engineered to mitigate uncovered and 
duplex failure downtime by having clients automatically switch to georedundant system 
instances if requests are not properly served by the primary system instance with accept-
able service latency, quality, and reliability. This topic is considered in detail in  “ Beyond 
Redundancy: How Geographic Redundancy Can Improve Service Availability and 
Reliability of Computer - Based Systems ”   [Bauer11] . Traditionally, an active redundant 
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system instance would be used to mitigate uncovered or duplex failure outages via 
client - initiated recovery because client - initiated recovery often offers a more practical 
way to rapidly detect and recover from these failures. Virtualization and cloud comput-
ing changes the economics of (virtual) hardware, so alternate solution architectures can 
be considered to mitigate the risk of uncovered and duplex failure events that enable 
clients to recover service to redundant system instances collocated with the failed 
instance, rather than requiring them to switch to a more distant data center.   

9.7 DISCUSSION

 Fundamentally, cloud computing providers offer distributed hot sites for disaster recov-
ery, and virtualization coupled with measured service and rapid elasticity means that 
georedundant solutions can be deployed via cloud computing at lower expense than 
traditional georedundancy. Ultimately, the feasible service availability benefi ts of 
cloud - based georedundancy are essentially the same as the feasible benefi ts of compa-
rable traditional georedundancy deployments. Virtualization does offer a slight incre-
mental benefi t over traditional georedundancy in its ability to reduce downtime via live 
migration and to reduce the negligible risk of catastrophic physical failure of a tradi-
tional network element by physically distributing hardware resources supporting the 
application across a data center, but these are small benefi ts that are not usually even 
quantifi ed. The economics of cloud computing permits at least some enterprises to shift 
from the traditional  “ active ”  primary site plus  “ standby ”  disaster recovery site model 
to an all - sites active model, which offers availability benefi ts that are discussed in 
Chapter  11 ,  “ Recommendations for Architecting a Reliable System. ”       
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     Cloud computing is inherently a more complicated arrangement than tradition comput-
ing; instead of suppliers offering equipment and applications directly to enterprises that 
will operate the equipment and applications, cloud computing separates the cloud con-
sumer enterprise that rents computing resources from the cloud service provider who 
owns and operates the computing resources. In addition to suppliers, cloud service 
providers, and cloud consumers, there are likely to be several communications service 
providers hauling IP traffi c between end users and cloud data centers. All of these 
players are accountable for some service impairments that can impact the quality of 
experience for end users. This chapter offers canonical service downtime budgets 
and models to help understand how accountability changes as traditional applications 
migrate to the cloud. This chapter also frames the broader challenge of end - to - end 
service availability via several standard service measurement points.  

   10.1    APPLICATION CONFIGURATION SCENARIOS 

 Virtualization enables deployment fl exibility beyond the options of traditional applica-
tion deployment. In rough order of increasing complexity, these virtualization scenarios 
are as follows:

APPLICATIONS, SOLUTIONS, 
AND ACCOUNTABILITY     
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    •      Traditional or Native Deployment     (i.e., No Virtualization Is Used) .      A software 
application is installed and integrated with an operating system running directly 
on nonvirtualized physical hardware.  

   •      Hardware Independence Usage Scenario   .      virtualization reduces or eliminates an 
application ’ s dependence on the specifi cs of the underlying physical hardware in 
the hardware independence usage model. While the application may still require 
the same machine instruction set (e.g., Intel), virtualization can decouple the 
physical memory, networking, storage, and other hardware - centric details from 
the application software so the application can be moved onto modern hardware 
rather than being tied to legacy hardware platforms.  

   •      Server Consolidation Usage Scenario   .      In the server consolidation usage sce-
nario, virtualization is used to increase resource utilization by having multiple 
applications share hardware resources. In some cases, this provides the ability 
to take advantage of otherwise underutilized hardware resources. Moore ’ s law 
assures that the processing power of servers grows steadily over time, yet the 
processing needs of individual application instances does not necessarily grow 
as rapidly. Thus, in many cases, the growth in available processing power may 
not be effectively used by a single application running on the server hardware. 
In these cases, applications may nominally oversubscribe hardware capacity 
and the hypervisor relies on statistical usage patterns to make resource sharing 
work well.  

   •      Multitenant Usage Scenario .      A multitenant   deployment permits multiple inde-
pendent instances of a single application to be consolidated onto a single virtual-
ized platform. For example, different application instances can be used for 
different user communities, such as for different enterprise customers; web 
service and electronic mail are examples of common multi - tenant applications 
as multiple independent instances of the same application may be running on 
a virtualized server platform to simultaneously serve different web sites or users 
from different enterprises. While some applications are explicitly written to be 
multitenant, other applications were written with the design assumption that a 
single application instances on a single hardware platform supports a single 
user community. Virtualization can facilitate making these single system - per - user 
community applications support multitenancy confi gurations in which several 
distinct user communities peacefully coexist on a shared, virtualized hardware 
platform.  

   •      Virtual Appliance Usage Scenario .      The virtual appliance   notion of the Distrib-
uted Management Task Force [DSP2017] represents one ultimate vision of vir-
tualization. In the appliance vision, applications are delivered as turnkey software 
prepackaged with operating systems, protocol stacks and supporting software. 
The supplier benefi ts by being able to thoroughly test the production confi gura-
tion of all system software, and the customer benefi ts from simpler installation 
and maintenance, and should enjoy the higher quality enabled by having their 
fi eld deployment software confi guration be 100% identical to the reference con-
fi guration that was validated by the appliance supplier.  
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   •      Cloud Deployment Usage Scenario .      The cloud deployment usage scenario pro-
vides the most fl exible confi guration, which is able to grow and degrow automati-
cally along with changing workloads. With the fl exibility of cloud deployment 
comes increased complexity, which is mitigated by service orchestration and 
elasticity, which provide automation guided by policies and usage data.   Cloud 
deployment risks and mitigations are primarily considered in Chapter  13 ,  “ Design 
for Reliability of Cloud Solutions. ”     

 Undoubtedly not all usage scenarios will apply to all applications. As a practical matter, 
some organizations will integrate virtualization into their existing applications over 
several releases by supporting different usage scenarios in different releases. For 
example, an application might be engineered and tested to support server consolidation 
in one release; engineered and tested for multitenant and cloud deployment in another 
release, and eventually offered as a virtualized appliance in a later release.  

   10.2    APPLICATION DEPLOYMENT SCENARIO 

 Neither traditional nor virtualized systems are useful in isolation; to deliver useful 
service to users, some physical hardware must be installed in a suitable physical envi-
ronment and supplied with both power and IP connectivity. Operationally, this is gener-
ally achieved by deploying applications into a data center (see Section  1.3.1 ,  “ What Is 
a Data Center? ” ). Organizations do not generally deploy applications by simply con-
necting a traditional or virtualized server hosting an application into a data center to 
the public internet. Instead, there is usually a security appliance like a fi rewall or deep 
packet inspection server to enforce a security perimeter to protect the application from 
external attack. Within the security perimeter is often a load balancer to distribute the 
offered load across the application ’ s front - end servers. Many applications are archi-
tected with multiple tiers to simplify scalability, such as supporting user interface and 
client interaction in a tier of front - end servers, implementing application logic and 
business rules in a middle tier, and maintaining application data in a third tier of data-
base servers. As critical applications are generally designed to remain operational even 
during routine maintenance and repair, these elements are often deployed across redun-
dant instances. All of this physical hardware is installed in a data center that provides 
power, a suitably controlled environment, and network connectivity to all of the ele-
ments, including the routers that connect the data center to the public Internet. This 
canonical application deployment architecture is illustrated in Figure  10.1 . Note that 
although the diagram shows pictures of server hardware elements, software on routers, 
perimeter security, load balancers, application front - end, application back - end, and 
database servers is implicitly assumed to be included in this deployment diagram.   

 Thus, the service availability seen by a user outside of the data center implicitly 
integrates the downtime of the data center ’ s routers, perimeter security, load balancers, 
power, environment and IP interconnection infrastructure, as well as the target applica-
tion, and all this equipment and infrastructure is inevitably subject to failures, just as 
the target application is. The service availability seen from the public Internet for one 
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application instance in one data center is inevitably lower than that of the product -
 attributable service availability of standalone applications.  

   10.3    SYSTEM DOWNTIME BUDGETS 

 System architects and reliability engineers use downtime budgets to manage service 
availability. For example, a system with  “ fi ve 9 ’ s ”  service availability is budgeted to 
have annual service downtime of 5.26 minutes per year; 5.26 minutes per year is the 
multiplicative product of the number of minutes per year (i.e., 365.25 days per average 
year times 24 hours per day times 60 minutes per hour) multiplied by 0.001% (99.999% 
uptime means 0.001% downtime). As with any budget:

    •      the expected downtime  “ expenses ”  are categorized;  

   •      each category is assigned a reasonable allocation of the overall downtime 
budget;  

   •      category allocations are adjusted to reach an acceptable and optimal total  “ cost ” ;  

   •      architecture, design, and test plans are managed to achieve the individual down-
time allocations; and  

   •      if the downtime budget is missed in one measurement period (e.g., release), then 
it can be altered, and/or additional effort can be invested in the next period to 
meet the downtime budget.    

 Thus, the question of whether or not a virtualized system instance can achieve the same 
service availability as a native confi guration comes down to the question of whether it 
is feasible and likely that a virtualized deployment can achieve a long - term average 
downtime budget that is equivalent to the downtime budget of a native system. We 
consider this question in three steps:

   1.     review the product - attributable downtime budget of a sample traditional high 
availability system;  

     Figure 10.1.     Canonical Single Data Center Application Deployment Architecture.  
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  2.     alter the traditional product - attributable downtime budget for a hardware -
 independence virtualized deployment scenario and assess implications for an 
infrastructure as a service (IaaS) supplier; and  

  3.     revise the hardware independence budget for cloud deployment scenario.    

   10.3.1    Traditional System Downtime Budget 

 Traditionally, system downtime expectations and predictions offered by suppliers 
covered only product - attributable service downtime, which is largely due to software 
and hardware failures (see Section  3.3.6 ,  “ Outage Attributability ” ). Downtime caused 
by factors not attributable to the system supplier or the product itself (e.g., power fail-
ures, network failures, and human mistakes by the customer ’ s maintenance staff) are 
generally excluded from product - attributable system availability measurements and 
predictions because they are allocated to other categories (e.g., customer - attributable 
downtime). Likewise, the measurement typically covered only agreed service time, so 
scheduled or planned downtime periods were excluded (see Section  3.3.1 ,  “ Service 
Availability Metric, ”  and Section  3.3.7 ,  “ Planned or Scheduled Downtime ” ). 

 Traditional system downtime budgets allocate unplanned product - attributed service 
downtime across three broad categories: hardware, software, and planned/procedural 
(sometimes called  “ human ” ). A traditional  “ fi ve 9 ’ s ”  system budget generally allocates 
10% of the budgeted 5.26 prorated minutes (315 prorated seconds) of annual service 
downtime to hardware, meaning that hardware attributed causes typically gets about 
30 seconds of prorated annual downtime. The vast majority of the remaining downtime 
will be allocated to unplanned software failures, but some of the remaining 4 minutes 
and 45 seconds might be budgeted to unsuccessful planned and procedural activities 
like failed software upgrades. The software downtime may be further budgeted either 
by architectural layer (e.g., application software vs. platform software) or by functional 
module (e.g., front - end software processes vs. back - end software processes), or may 
be factored in some other way. Table  10.1  gives a sample  “ fi ve 9 ’ s ”  product - attributable 
downtime budget for an application.   

 Note that while fi ve 9 ’ s technically means 5.26 annualized down minutes, down-
time budgets typically round this to 5.25 down - minutes for simplicity. This tiny round-
ing error is likely to be far smaller than the uncertainty in the estimates of individual 
downtime categories, so it does not materially affect the utility of the budget.  

   10.3.2    Virtualized Application Downtime Budget 

 The hardware independence and server consolidation usage scenarios insert a hypervi-
sor, and perhaps a host OS instance, between the guest OS supporting the target appli-
cation and the underlying hardware. While hardware - attributed downtime doesn ’ t 
simply vanish in these scenarios, accountability for hardware - attributed downtime may 
be different. In particular, since the virtualized platform and underlying physical hard-
ware may be supplied separately from the application software, the virtualized applica-
tion budget explicitly considers software and virtualized hardware downtime separately. 
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Table  10.2  modifi es the sample traditional fi ve 9 ’ s budget of Table  10.1  for hardware 
independence or server consolidation usage scenarios as follows:

    •       “ hardware failure downtime ”  becomes product - attributable  “ virtualized hard-
ware platform downtime ” ;  

   •       “ software failure downtime ”  is unchanged; and  

   •      planned and procedural is refactored from outcome - based attribution (i.e., suc-
cessful scheduled activities vs. unsuccessful scheduled activities) to downtime 
attribution based on application versus virtualized platform.      

 Thus, the virtualized application retains the entire software failure downtime attribu-
tion, as well as a portion of the planned and procedural attribution, while the hardware 
failure downtime and hardware - related planned and procedural downtimes are explic-
itly separated. This enables one to explicitly address the feasibility and likelihood of a 
virtualized application achieving its product - attributable availability target by indepen-
dently considering the feasibility and likelihood of the virtualized software achieving 
its downtime budget over the long term and the feasibility and likelihood of the virtual-
ized hardware platform achieving its product - attributable downtime budget over the 
long term as well.  

  TABLE 10.1.    Sample Traditional Five 9 ’ s Downtime Budget 

   Product - Attributable Downtime Category  

   Annualized Target 
for 99.999%  

   %     Seconds     Minutes  

   Hardware sttributable  — target: 30 seconds    =    0 minute 30 seconds  
   Hardware failure downtime  — service downtime 
triggered by hardware failures.  

  30    0.5    10  

   Software attributable  — target: 225 seconds    =    3 minutes 45 seconds  
   Software failure downtime  — service downtime 
due to software failures of platform and/or 
application software.  

  225    3.75    71  

   Planned and procedural attributable  — target: 60 seconds    =    1 minute 0 second  
   Successful scheduled activities  — service downtime 
 “ by design ”  for successful upgrade, update, 
retrofi t, hardware growth, and other scheduled 
or planned maintenance activities.  

  0    0    0  

   Unsuccessful procedural activities  — service downtime 
attributed to unsuccessful or botched 
maintenance activities such as upgrade, update, 
retrofi t, hardware growth, and provisioning.  

  60    1    19  

  Total    315    5.25      
  Availability    99.999%      
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  TABLE 10.2.    Sample Basic Virtualized Five 9 ’ s Downtime Budget 

   Product - Attributable Downtime Category  

   Annualized Target 
for 99.999%  

   %     Seconds     Minutes  

   Hardware attributable  — target: 30 seconds    =    0 minute 30 seconds  
   Virtualized hardware platform downtime  — service downtime 
attributed to virtualized hardware resources (e.g., virtual 
CPU, memory, disk, and networking).  

  30    0.5    10  

   Software attributable  — target: 225 seconds    =    3 minutes 45 seconds  
   Software failure downtime  — service downtime due to 
software failures of platform and/or application software.  

  225    3.75    71  

   Planned and procedural attributable  — target: 60 seconds    =    1 minute 0 second  
   Application software - related planned and procedural 
downtime  — product - attributable service downtime attributed 
to successful and unsuccessful planned and procedural 
activities associated with application  

  45    0.75    14  

   Virtualized platform - related planned and procedural 
downtime  — product - attributable service downtime attributed 
to successful and unsuccessful planned and procedural 
activities associated with the virtualized hardware platform.  

  15    0.25    5  

  Total    315    5.25      
  Availability    99.999%      

   10.3.3     I  aa  S  Hardware Downtime Expectations 

 For a virtualized application with the canonical fi ve 9 ’ s budget of Section  10.3.2  to 
achieve fi ve 9 ’ s product - attributable service downtime on an IaaS platform, the IaaS 
platform should offer comparable product - attributed hardware downtime to assure 
comparable service availability. Architecturally, the IaaS - attributable downtime budget 
challenge comes down to this:  can the product - attributable downtime of the IaaS pro-
vider ’ s infrastructure achieve comparable service downtime to the system ’ s traditional 
high availability hardware confi guration?  Note that for consistency with traditional 
system downtime budgets and predictions, this allocation considers only hardware and 
software downtime causes directly associated with emulating the traditional system 
hardware; this means that the other categories of impairments generally attributed to 
IaaS service providers (e.g., power, environment, and human) are not included in this 
product - centric budget. Downtime due to rapid elasticity and other aspects of cloud 
computing are considered in the next section ( “ Cloud Based Application Downtime 
Budget ” ). 

 Figure  10.2  shows a reliability block diagram (RBD) of sample blade - based high 
availability system architecture, and Figure  10.3  shows a RBD of equivalent sample 
high availability IaaS infrastructure. Logically, the Ethernet switch blades of the blade -
 based system of Figure  10.2  are replaced by pairs of  top - of - rack  ( TOR ) and  end - of - row  
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     Figure 10.2.     RBD of Sample Application on Blade - Based Server Hardware.  
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     Figure 10.3.     RBD of Sample Application on IaaS Platform.  
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( EOR ) Ethernet switches; the compute blades are replaced by portions of the IaaS 
provider ’ s server farm and disk arrays; and the power entry modules and fan trays are 
integrated with each of IaaS provider ’ s components. The backplane element in Figure 
 10.2  logically separates into the internal chassis or backplane arrangements within each 
of these IaaS components (which are considered in availability modeling of each com-
ponent) and the Ethernet cables that interconnect the EOR switch, TOR switch, server 
resources, and storage array; Ethernet cables are not considered in availability model-
ing. The exact arrangement of compute servers in the RBD is a function of how the 
application ’ s virtual machines are mapped onto physical hardware. Typically redundant 
VM instances (e.g., active and standby instances) will explicitly be mapped onto dif-
ferent physical servers so that no physical server is a single point of failure. Note that 
as the storage array may be in a different rack (or row) than the server resources, a 
separate pairs of TOR switches (or additional IP infrastructure) may be required to 
connect the compute and storage resources. Traditional high availability systems are 
developed to achieve a long - term average of 30 seconds of annualized downtime across 
Figure  10.3 ; the question becomes whether IaaS providers can architect their high 
availability infrastructure (e.g., Figure  10.3 ) to achieve comparable product - attributable 
downtime. This question is considered in detail in Section  11.5 ,  “ Minimizing Hardware -
 Attributed Downtime. ”  Fundamentally, while there is likely to be more hardware — and 
hence a higher hardware failure rate — in the more fl exible IaaS deployment confi gura-
tion than with an optimized traditional native hardware deployment, more effective 
failure detection, redundancy, and recovery mechanisms can at least partially compen-
sate for this slightly higher underlying hardware failure rate.    

   10.3.4    Cloud - Based Application Downtime Budget 

 Cloud deployment scenarios are fundamentally different from the hardware indepen-
dence usage scenario because the cloud service provider ’ s virtualized hardware plat-
form is offered separately from the application software. While the application supplier 
is not accountable for the root cause of any hardware failures, the application supplier 
is responsible for promptly and automatically recovering service following typical 
hardware failures when the application is deployed in a high availability confi guration. 
For example, virtualized servers hosting application VMs will occasionally fail, thus 
impacting application users being served by the affected VM instances. Application 
suppliers are expected to confi gure their software to automatically detect and recover 
from these inevitable hardware failures with minimal impact on user service. As at least 
some of these hardware events are likely to cause brief user service impact, application 
suppliers can only be expected to achieve their service availability expectations when 
the underlying hardware offered by the cloud service provider is acceptably reliable 
and the cloud infrastructure behaves robustly. For example, if the cloud service pro-
vider ’ s RAID storage system fails to properly mitigate a hard disk failure and renders 
application data unavailable for a period, then that downtime should be attributed to 
the cloud service provider. Likewise, if the cloud service provider ’ s hardware experi-
ences epidemic hardware failures well beyond the prescribed failure rate (e.g., as 
indicated in the SLA), then the application supplier should not be held accountable 
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for the excess downtime resulting from the application ’ s high availability mechanisms 
being forced to activate frequently, thus accruing more than the budgeted amount of 
hardware - attributed service downtime. Alternately, if the cloud service provider ’ s vir-
tualized platform management software fails to maintain proper control of their plat-
form infrastructure and meet the needs of the application VM instances, then it will be 
very diffi cult for the application supplier ’ s software to recover service in the required 
amount of time (e.g., in seconds). Thus, application suppliers should retain a modest 
cloud platform downtime budget to cover detecting and recovering from ordinary cloud 
provider platform failures. However, since extraordinary cloud service provider failures 
are beyond the reasonable ability of application software to address rapidly and auto-
matically, that downtime should be assigned to the cloud service provider rather than 
the application software. The canonical cloud - based application budget should include 
a modest allocation for application recovery from ordinary cloud service platform 
failures, but no application - attributable downtime need be budgeted for planned and 
procedural downtime of the cloud platform because that is entirely the responsibility 
of the cloud service provider unless there are application specifi c mechanisms built in 
to the planned operations, such as volatile data synchronization. 

 Cloud deployment introduces expectations for the application to support rapid 
online elasticity, service orchestration, and perhaps live migration of VM instances to 
enable the cloud service supplier to better manage their physical resources. By defi -
nition, live migration and online capacity changes are executed while the system is 
online and servicing users, so any failure that impacts service availability for those 
users should be counted as product - attributed downtime. Although the root cause of 
product - attributable failures of elastic growth, elastic degrowth, live migration, and 
other IT service management (ITSM) activities is ultimately likely to be software, the 
authors recommend creating a new downtime category called  “ cloud service manage-
ment. ”  As this new category is an evolution of the traditional application software 
related planned and procedural category, that downtime allocation is carried forward 
into  “ application - attributable cloud maintenance activities. ”  In addition, as the applica-
tion software supplier is not generally accountable for planned and procedural down-
time of the cloud service platform, the downtime that was used for product - attributable 
planned and procedural downtime of the virtualized platform in Section  10.3.2  can be 
reallocated to application - attributable cloud maintenance budget to help cover the 
additional downtime due to elastic growth and degrowth and other cloud - related main-
tenance actions. The 60 seconds budgeted for product - attributed cloud service manage-
ment downtime will likely be subdivided by activity such as elastic growth and degrowth 
versus software release management activities and so on. 

 A canonical application - attributable downtime budget for a  “ fi ve 9s ”  cloud - based 
application is given in Table  10.3 .   

 Note that while the risk of failure — and expected recovery time — for any particular 
ITSM operation (e.g., elastic capacity growth) should be fairly constant, increasing the 
frequency of ITSM actions naturally increases the likelihood of service downtime. For 
example, if the application supplier estimates one elastic capacity change per week will 
produce a long - term average of 10 seconds of prorated product - attributable service 
downtime per application instance per year, then executing an average of two elastic 
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  TABLE 10.3.    Canonical Application - Attributable Cloud - Based Five 9 ’ s Downtime Budget 

   Application - Attributable Downtime Category  

   Annualized Target 
for 99.999%  

   %     Seconds     Minutes  

   Cloud platform attributable  — target: 30 seconds    =    0 minute 30 seconds  
   Application downtime recovering from ordinary XaaS 
failures  — service downtime for application to detect and 
recover from ordinary XaaS platform failures.  

  30    0.50    10  

   Software attributable  — target: 225 seconds    =    3 minutes 45 seconds  
   Application software failures  — service downtime due to 
software failures of platform and/or application software.  

  225    3.75    71  

   Cloud maintenance attributable  — target: 60 seconds    =    1 minute 0 second  
   Product - attributable cloud maintenance activities  —
 chargeable service downtime for: 
     •      elastic capacity growth and degrowth;  
   •      software upgrade, update, retrofi t, and patching  
   •      live migration; and  
   •      other IT service management activities.     

  60    1.00    19  

  Total    315    5.25      
  Availability    99.999%      

capacity changes per day is likely to accrue roughly an order of magnitude more service 
downtime. Thus, suppliers should make reasonable assumptions for the rate of ITSM 
actions and accept accountability for meeting downtime expectations based on those 
assumptions. If the cloud consumer or cloud service provider performs more ITSM 
actions than were reasonably assumed, then the consumer or service provider should 
be account able for the excess downtime.  

   10.3.5    Summary 

 Table  10.4  summarizes the evolution of nominal downtime budgets proposed by the 
authors from a traditional fi ve 9 ’ s budget to virtualized deployment (e.g., hardware 
independence or server consolidation usage scenario) to cloud deployment. The key 
insight of this table is that downtime allocations stay fairly consistent:

    •      Hardware related failures still occur and accrue about 10% of overall service 
downtime.  

   •      (Unplanned) software failures still occur and should accrue about the same 
amount of overall (prorated) service downtime.  

   •      Product/application - attributed service management (e.g., procedural and mainte-
nance) activities still carry some downtime risk.        
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  TABLE 10.4.    Evolution of Sample Downtime Budgets 

   Sample  “ Five 9 ’ s ”  Product or Application - Attributable Downtime Budgets  
   Annual 
Down 

Minutes     %  
   Traditional 
Deployment     Virtualized Deployment     Cloud Deployment  

   Hardware related  — target: 30 seconds    =    0 minute 30 seconds  
   Hardware failure 
downtime  — service 
downtime triggered 
by hardware failures.  

   Virtualized hardware 
platform downtime  —
 service downtime 
attributed to virtualized 
hardware resources (e.g., 
virtual CPU, memory, 
disk and networking).  

   Application 
downtime 
recovering from 
ordinary XaaS 
failures  — service 
downtime for 
application to 
detect and recover 
from ordinary 
XaaS platform 
failures.  

  0.50    10  

   Software attributable  — target: 225 seconds    =    3 minutes 45 seconds  
   Application software failures  — service downtime due to software failures of 
platform and/or application software.  

  3.75    71  

   Procedural and maintenance attributable  — target: 60 seconds    =    1 minute 0 second  
   Successful scheduled 
activities  — service 
downtime  “ by 
design ”  for successful 
upgrade, update, 
retrofi t, hardware 
growth, and other 
scheduled or planned 
maintenance 
activities.  

   Application software -
 related planned and 
procedural downtime  —
 product - attributable 
service downtime 
attributed to successful 
and unsuccessful 
planned and procedural 
activities associated with 
application software.  

   Product -
 attributable cloud 
maintenance 
activities  —
 chargeable service 
downtime for: 
     •      elastic capacity 

growth and 
degrowth;  

   •      software 
upgrade, update, 
retrofi t, and 
patching  

   •      live migration; 
and  

   •      other IT service 
management 
activities.     

  1.00    19  

   Unsuccessful 
procedural 
activities  — service 
downtime attributed 
to unsuccessful or 
botched maintenance 
activities, such as 
upgrade, update, 
retrofi t, hardware 
growth, and 
provisioning.  

   Virtualized platform -
 related planned and 
procedural downtime  —
 product - attributable 
service downtime 
attributed to successful 
and unsuccessful 
planned and procedural 
activities associated with 
the virtualized hardware 
platform.  

          Total    5.25      
          Availability    99.999%      
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   10.4    END - TO - END SOLUTIONS CONSIDERATIONS 

   In engineering, a  solution  is a design that fulfi lls (solves) the requirements (constraints) 
of a business need (problem). In this context, a solution refers to an arrangement of 
products, facilities, policies, and services that fulfi lls an information related need. In 
the context of the eight - ingredient model presented in Section  3.2 , a solution consists 
of hardware, software, networking (both applications protocols and IP), power, environ-
ment, humans, and policies. As a practical matter, solutions largely integrate existing 
and new products (hardware plus software and application protocols), which are typi-
cally installed in existing data centers (environments with power and IP networking) 
that communicate over largely existing IP networks and often leveraging standard 
application payload syntaxes and semantics. The value add of the solution is exactly 
how these ingredients are integrated, as well as the policies that govern how these 
ingredients will function and be operated, administered, maintained, and provisioned 
by human staff. Solution design for reliability (discussed in Chapter  13 ) assures that 
the integration of these eight ingredients to meet a business need for information or 
communications meets the expectations for service reliability and service availability. 

   10.4.1    What is an End - to - End Solution? 

 An end - to - end solution includes the equipment and facilities that connect an end user 
to an application instance hosted in a data center. Figure  10.4  illustrates a sample end -
 to - end solution for a user accessing an application instance via a smartphone. For the 
user to successfully access the application, all of the following components and facili-
ties must be available:

    •      End User Device (smartphone, in this case) .      Must be fully operational, meaning 
that hardware and software must be up, battery must be adequately charged, 
business arrangements (i.e., a service contract) must be in place to assure access 
to a wireless network, and so on.  

     Figure 10.4.     Sample End - to - End Solution.  

Public
Internet

Wireless
Carrier’s
Network

Backhaul
Network

IaaS
(Cloud)

Data Center



198 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

   •      Wireless Base Station .      At least one of the carrier ’ s wireless base stations with 
suffi cient capacity and acceptable wireless coverage to the user ’ s device must be 
available.  

   •      Wireless Backhaul .      Facilities and equipment must be available to backhaul IP 
traffi c from the carrier ’ s base station to their core network.  

   •      Wireless Carrier ’ s Core Network .      Must be available to pass traffi c to and from 
the public Internet.  

   •      Public Internet .      The Internet is not a single monolithic entity, but rather an 
internetworking arrangement between many network operators. In this context, 
 “ public Internet ”  is shorthand for the one or more service providers that carry IP 
traffi c between the wireless carrier ’ s core network and the data center hosting 
the application instance serving the user. Note that high reliability data centers 
will be engineered with connections to several Internet service providers, and 
wireless carriers will also have network connections to multiple internet service 
providers. Thus, there are likely to be several redundant IP paths to connect the 
end user ’ s wireless carrier ’ s core network with the data center hosting the appli-
cation instance serving the end user.  

   •      Data Center Infrastructure and Facilities .      The data center hosting the user ’ s 
application instance, as well as routers, security appliances, load balancers, 
compute and storage servers, IP infrastructure, and so on, must be available.  

   •      Target Application .      Obviously, the application itself must be available to serve 
requests from the end user.      

 Thus, the service reliability, availability, and latency experienced by the end user can 
be impacted by far more than merely the application instance itself and the data 
center hosting the application instance. In fact, equipment and facilities closest to the 
end user tend to have less redundancy and lower reliability than equipment and facili-
ties in the core of the network and in cloud data centers. For example, while there is 
often full redundancy in IP networking equipment and facilities in high reliability 
data centers and carrier ’ s core networks, an end user often has a single (nonredundant) 
device to access a service with, sometimes has patchy wireless coverage to one, 
or perhaps several base stations, and each base station may backhaul traffi c to the 
wireless carrier ’ s core network over infrastructure that could be simplex (i.e., 
nonredundant).  

   10.4.2    Consumer - Specifi c Architectures 

 Cloud computing facilitates more diverse solution architectures than were traditionally 
deployed. For example, one can imagine an enterprise opting to use cost - effective 
compute resources offered by a regional cloud service provider but choosing to main-
tain enterprise data in their private data center. Applying this requirement to the 
canonical deployment model of Figure  10.1  yields Figure  10.5 . While the assumed 
customer - specifi c requirements need not change the solutions elements (e.g., the same 
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database server may be used), the customer specifi c requirements do add the following 
elements to the critical service delivery path:

    •      wide area network (WAN) connectivity from public data center hosting applica-
tion instances to private data center hosting enterprise data;  

   •      second pair of routers in the private data center hosting enterprise data;  

   •      private data center power, environment, and interconnection facilitie;s;  

   •      second pair of security appliances in the private data center; and  

   •      second pair of load balancers in the private data center.      

 Adding more equipment and facilities to the critical service delivery path naturally 
increases the risk of service unavailability due to failure or unavailability of those 
additional elements.  

   10.4.3    Data Center Redundancy 

 Cloud computing makes it easier to deploy an application to multiple data centers 
because the cloud consumer avoids the huge capital expense of building a second data 
center and merely pays for the resources actually used in each data center. Because data 
centers are inherently subject to external and force majeure risks, as well as ordinary 
failures, the best practice is to deploy redundant instances of critical applications to a 

     Figure 10.5.     Sample Distributed Cloud Architecture.  
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geographically separated data center to assure that user service can be promptly recov-
ered following a disaster or catastrophic failure. When properly confi gured, geographic 
redundancy can mitigate at least some of the service downtime accrued by applications 
deployed in individual data centers, as discussed in Chapter  9 ,  “ Geographic Distribu-
tion, Georedundancy, and Disaster Recovery. ”  Section  11.2  discusses how to maximize 
service availability across multiple data centers. 

 Redundant data centers also permit a variety of service recovery strategies to 
mitigate critical failures of applications or equipment in a data center. Consider Figure 
 10.6 , in which the canonical data center application of Figure  10.1  is deployed in 
both cloud data center  “ A ”  and cloud data center  “ B. ”  If the application back - end 
servers in site  “ A ”  become unavailable due to duplex/multiple failure (or other reason), 
then the application front - end servers in site  “ A ”  can redirect their traffi c to back - 
end servers in site  “ B, ”  which will be supported by database servers in site  “ B, ”  thereby 
offering service continuity for active users. High availability solutions will be 
architected to rapidly locate and use available resources to mitigate service impact of 
failures   

 Solutions will also distribute applications across multiple data centers (e.g., in 
multiple regions) to improve the quality of experience for globally distributed end users. 
With appropriate engineering, these globally distributed data centers can provide both 
business continuity via disaster recovery and boost service availability by mitigating 
application or facility failures.   

     Figure 10.6.     Sample Recovery Scenario in Distributed Cloud Architecture.  
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   10.5    ATTRIBUTABILITY FOR SERVICE IMPAIRMENTS 

     As explained in Section  3.3.6 ,  “ Outage Attributability, ”  the telecommunications indus-
try has traditionally classifi ed service outages into three buckets:

    •       Product - or supplier - attributable events , such as software and hardware 
failures;  

   •       Customer or service provider - attributable events , such as human errors by cus-
tomer ’ s or service provider ’ s staff when provisioning services or performing 
maintenance actions;  

   •       External - attributable events , such as lightning, accidents, or deliberate acts 
by third parties, and natural disasters that damage network facilities and 
infrastructure.    

 The cloud computing service model is inherently more complicated than traditional 
telecom networks because:

   1.     accountability previously held by customer or service provider is often split in 
cloud context between the cloud consumer and the XaaS cloud service provider; 
and  

  2.     many more service providers may be in the service delivery path.    

 Thus, the simple three bucket attribution model is no longer suffi cient. The authors 
offer the following more comprehensive attributability model for cloud - based services. 
While it may be appropriate to add additional buckets or consolidate some buckets 
based on the deployment model or other details of a particular cloud based service, 
these categories are a useful starting point.

    •      End User Attributable .        Some service impairments will be attributable to 
operation, confi guration or failure of the end user ’ s device. For example, service 
delivery will be impacted if a user operates their wireless device to the point 
of battery exhaustion. This category also includes user equipment that is in 
front of the commercial access network serving the end user. For example, if 
the end user ’ s microwave oven impacts the Wi - Fi link between their wireless 
device and their Wi - Fi access point, then that impairment would be end user 
attributable.  

   •      Access Network Attributable .        The end user ’ s IP traffi c is carried by a service 
provider over LTE, 3G, DSL, GPON, cable, satellite, or some other wireless or 
wireline IP access technology to the IP WAN that connects to the IaaS provider ’ s 
data center. Access and backhaul networks are inherently subject to facility and 
infrastructure failures due to equipment failure, accidents, lightning and so on. 
While the specifi c access network outage events might be product attributable, 
service provider attributable, or external attributable, that detail is unimportant 
to the end user; regardless of the root cause, their service was impacted.  
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   •      WAN Attributable .        Typically, one or more Internet providers will carry the end 
user ’ s IP traffi c from their ISP ’ s access network to the IaaS data center hosting 
the application. Note that while IP packets may fl ow across several carriers ’  
networks, the IaaS data center may be served by multiple carriers, and each of 
those carrier ’ s core IP networks is likely to include redundant facilities and equip-
ment. Thus, despite the technical and commercial complexity of WAN network-
ing, this category is likely to contribute little service impairment for applications 
hosted by top - tier IaaS service providers.  

   •      Cloud Service Provider Attributable .        Individual data centers and IaaS/platform 
as a service (PaaS) infrastructure are inherently at risk of catastrophic failures 
that impact availability and reliability of applications hosted in those 
data centers.  

   •      Application Software (or Product) Attributable .        Defects in the application soft-
ware, including software provided by software as a service (SaaS) service provid-
ers and software suppliers, can cause reliability and availability impairments.  

   •      Cloud Consumer Attributable .        Errors by the cloud consumer to properly provi-
sion, confi gure, or operate their application can directly impact service offered 
by end users. For example, if user account data are misconfi gured by cloud 
consumer ’ s provisioning data entry staff, then users might be erroneously denied 
access to services that they are entitled to.    

 Note that in some cases, a single organization may be accountable for more than one 
attributable category. For example, a telecom service provider may be accountable for 
both the access network and the WAN, and an application service provider may be 
accountable for both the cloud consumer and application software categories. 

 While this attribution framework is not perfect for every type of cloud - based 
application with every service and deployment model, it is a reasonable starting point. 
For example, specifi c applications may add additional attribution categories (e.g., 
external attributable for force majeure and other events that are beyond the reasonable 
control of any of the explicit parties in the basic attribution framework). 

 Specifi c outage responsibilities will vary based on both the cloud service model 
(IaaS, PaaS, and SaaS) and contractual terms between the cloud consumer and cloud 
service provider. Figure  10.7  visualizes hypothetical outage (and hence downtime or 
availability) accountability for key elements in the service delivery path of a cloud -
 based application offered by an IaaS or PaaS provider from a single data center. Actual 
accountabilities will vary based on contractual agreements between cloud consumers 
and their cloud service providers. Consider accountability on an element - by - element 
basis:

    •      Routing .      Cloud service provider is typically responsible for IP routing and con-
nectivity throughout the data center to the demarcation point with one or more 
Internet access providers.  

   •      Data Center .      Cloud service provider is responsible for all aspects of data center 
operation.  
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   •      Perimeter Security .      While the cloud service provider is typically responsible 
for the perimeter security element hardware and software, cloud consumers have 
at least partial responsibility for confi guring the perimeter security, such as con-
fi guring what traffi c is allowed to pass through the security perimeter and opening 
fi rewall pinholes.  

   •      Load Balancing .      Cloud service providers often take responsibility for load bal-
ancing hardware and software, but expect the cloud consumer to appropriately 
confi gure the load balancers so that traffi c is directed to operational application 
front - end server instances.  

   •      Application Front - End, Back - End and Database Server .      Cloud service provider 
is responsible for all aspects of server hardware and virtualization platform. 
More or less application software will be supported by the cloud service provider 
depending on the particulars of the IaaS, PaaS, or SaaS arrangement. There may 
be more or less cloud - consumer - specifi c application software running above the 
cloud service provider ’ s software depending on the specifi cs of the consumer ’ s 
application; responsibility for that software may be retained by the system inte-
grator or distributed across several software suppliers and/or retained by the 
cloud consumer themselves. Responsibility for provisioning and correctness of 
application data is retained by the cloud consumer, while the cloud service pro-
vider has responsibility for assuring that data written to virtualized storage are 
continuously available.       

     Figure 10.7.     Simplifi ed Responsibilities for a Canonical Cloud Application.  
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   10.6    SOLUTION SERVICE MEASUREMENT 

 Characterizing reliability and availability of network - based user services is inherently 
complex because end users are separated from the running application instances via 
IaaS data center infrastructure, WAN facilities and infrastructure, backhaul networking, 
wireless or wireline access, and some user equipment, as illustrated in Figure  10.4 . 
Different users are likely to access the service via different devices (e.g., smartphones, 
tablets, laptops, and set - top boxes) over different wireless or wireline access networks 
operated by different service providers. Popular and highly available applications are 
likely to be offered from several geographically distributed data centers, so individual 
users will be served from different application instances running in different data 
centers. As these different data centers will be geographically distributed, various WAN 
facilities and infrastructure will be engaged to pass IP traffi c between the end users ’  
ISP and the IaaS data center serving them. 

 A key service measurement challenge is deciding where in the service delivery 
path to collect data because this drives how much of the end - to - end impairments are 
covered by the measurement. For the most expansive end - to - end measurement, service 
measurement data can be gathered from end users ’  devices (e.g., smartphones and set -
 top boxes) to integrate the impact of all service impairments across access, backhaul, 
WAN, IaaS data center, and application instances. Unfortunately, it is inherently diffi -
cult to determine and attribute the root cause of any service impairments based on 
end device data because the impact of so many elements and facilities is implicitly 
convolved together. At the other extreme, one can query or probe specifi c application 
instances from within the data center hosting the application ’ s VM instances to deter-
mine their reliability and availability as seen from within the data center hosting the 
specifi c application instance. While this type of focused local measurement makes it 
very easy to characterize the reliability and availability of specifi c application instances, 
it does not reliably estimate the true end - to - end service quality, reliability, and avail-
ability experienced by end users. 

 A common engineering compromise is to query or probe all nominally operational 
application instances from a single fi xed site (e.g., the cloud consumer ’ s enterprise 
network or a specifi c cloud data center) to characterize the service likely to be experi-
enced by end users with the highest quality IP networking service. End users with 
wireless access will undoubtedly experience somewhat poorer service quality due 
to networking impairments associated with wireless networking technology, service 
quality and coverage issues with their wireless service provider, and other issues 
(e.g., battery exhaustion of their wireless device). Nevertheless, data from a fi xed site 
outside of the target data center offer a good reference point to characterize service 
reliability. 

   10.6.1    Service Availability Measurement Points 

 As shown in Figure  10.8 , there are three natural points to consider the measurement of 
service availability of a cloud - hosted application:
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    •         Measurement Point 1 ( MP 1 ):  Component Instance Availability .        Product -
 attributable service availability for each component or system critical to applica-
tion service delivery in the cloud data center. An application ’ s measurement 
should be taken with minimal IP routing, switching, and facility infrastructure 
between the server hosting the application and the measurement point to elimi-
nate all impairments not associated with the application and directly supporting 
hardware. MP 1 ratings for routers, security appliances, load balancers, and other 
infrastructure confi gurations can be considered separately. MP 1 does not con-
sider the service availability benefi t of georedundancy.  

   •         Measurement Point 2 ( MP 2 ):  Primary Data Center Service Availability .        All 
causes application service availability per data center seen by the public internet 
(i.e., on the carrier side of the cloud data center ’ s router). MP 2 characterizes the 
performance of individual application (or solution) instances along with the 
performance of the hosting data center, but MP 2 does not consider the service 
availability benefi t of georedundancy.  

   •         Measurement Point 3 ( MP 3 ):  Aggregate Service Availability .         Service avail-
ability across multiple data centers to mitigate any impairment of individual 
application instances, IP equipment and facilities, and data center infrastructure 
(including power and environmental factors) that may impact any single data 
center. MP 3 incorporates the service availability benefi t of georedundant appli-
cation instances deployed across multiple cloud data centers.      

 MPs 1 and 2 can be easily overlaid onto the canonical data center deployment 
of Figure  10.1  to create Figure  10.9 . For simplicity, we consider the performance of 

     Figure 10.8.     Recommended Cloud - Related Service Availability Measurement Points.  
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application front - end servers, back - end servers, and database servers separately, as well 
as routers, load balancers, and security appliances. One can thus see in Figure  10.9  how 
MP 2 is logically the sum of MP 1 values of all elements in the service delivery path, 
as well as additional downtime associated with the data center itself and human opera-
tions and provisioning of all equipment, facilities, and applications.   

 MP 3 is inherently more complex and subtle to model and understand because it 
integrates the benefi ts across data center redundancy, as well as sophisticated service 
load distribution strategies and client - initiated recovery mechanisms. In some cases, 
georedundant recovery is performed by the client, such as when the client times out 
(or explicitly cancels) transactions to one data center and retries their service request 
to a different IP address for a georedundant data center. In other cases, like the example 
of Figure  10.6 , more sophisticated recovery strategies are employed. Thus, MP 3 is 
impacted not only by the fundamental rate of critical MP 2 failures but also by:

    •      the speed and accuracy of detecting MP 2 impairments;  

   •      the georedundant recovery latency and effectiveness; and  

   •      any potential user service disruption when user service is migrated back to the 
recovered primary data center.    

 Predicting MP 3 is a subtle and complex subject that is considered in  [Bauer11] . 
 In addition to these general measurement points, there is the overall end - to - end 

service availability. Overlaying MP 1, MP 2, and MP 3 from Figure  10.8  onto a general-
ized version of Figure  10.4  produces Figure  10.10 , which highlights the scope of 
the end - to - end service availability, which the authors will call  measurement point 4  

     Figure 10.9.     Canonical Example of MP 1 and MP 2.  
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( MP 4 )   for  end - to - end service availability . Operationally, MP 4 integrates the MP 3 
aggregate service availability across georedundant data center metric with the end - to -
 end access, backhaul, and wide area networking between the user ’ s equipment and the 
cloud data center serving the user. MP 4 is obviously highly dependent on the particulars 
of the access network serving the end user, so different end users, even in the same 
geographic area, might experience very different MP 4 performance.   

 MP 4 performance is naturally impacted by the physical location of each individual 
end user and the networking equipment and facilities between them and the serving 
cloud data center. For example, the quality of service experienced by a user via their 
smartphone on the streets of London for a cloud application served from a data center 
in the United Kingdom may be very different from the quality of service experienced 
via the same smartphone in, say, East Africa. While two cloud data centers is the 
minimum number necessary to enable good business continuity and disaster recovery 
for critical services, far more (smaller) cloud data centers can be distributed logically 
and physically closer to end users, thereby boosting users ’  quality of experience by 
shortening transport service latency. In addition to shortening transport latency, the 
shorter end - to - end service delivery path to the closest (small) distributed data center 
instance should boost service availability be eliminating removing WAN facilities and 
infrastructure, which are inevitably subject to failure and contribute downtime.   

   10.7    MANAGING RELIABILITY AND SERVICE 
OF CLOUD COMPUTING 

 The remainder of the book is organized as follows:

    •      Chapter  11 ,  “ Recommendations for Architecting a Reliable System, ”  presents 
architectural recommendations to maximize the service reliability and availabil-
ity of virtualized applications and cloud - based solutions.  

   •      Chapter  12 ,  “ Design for Reliability of Virtualized Applications, ”  explains 
how design for reliability diligence should be altered to assure that virtualized 

     Figure 10.10.     End - to - End Service Availability Key Quality Indicators.  

WAN or
Public

Internet

Cloud
data

center
MP 3: 

Aggregate
Service 

Measurements

MP 4: End-to-
End Service 

Measurements

MP 2: Primary 
Data Center 

Service 
Measurements

Wireless
Access

Network

Backhaul
Network

Cloud
data

center

MP 1: Single 
Component 

Instance 
Measurements



208 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

applications can meet, and perhaps exceed, the availability expectations of tra-
ditional application deployments.  

   •      Chapter  13 ,  “ Design for Reliability of Cloud Solutions, ”  explains how traditional 
solution design for reliability diligence should be tailored so cloud based solu-
tions can meet or exceed the service reliability and availability expectations of 
traditional solution deployments.  

   •      Chapter  14 ,  “ Summary, ”  reviews the key insights of Part I,  “ Basics, ”  and Part II, 
 “ Analysis, ”  and summarizes the key take aways of Part III,  “ Recommendations. ”        
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     The earlier chapters provided reliability and availability analyses for virtualization and 
cloud, as well as a lower level analysis of key areas, such as software, hardware, capac-
ity, and service orchestration. The purpose of this chapter is to draw from the informa-
tion in the earlier chapters to provide recommendations for architecting a highly reliable, 
highly available application and solution architectures for virtualized or cloud environ-
ments. The recommendations will also provide input for specifying a design for reli-
ability framework that aligns with expectations for applications in the virtualized and 
cloud environments. The chapter begins with some key architectural decisions that need 
to be made, such as how to map software into virtual machines (VMs), optimize service 
load distribution, and choose the optimal data management mechanism. The chapter 
goes on to discuss some other key topics, such as hardware downtime, rapid elasticity, 
service transition activity management, and disaster recovery. The chapter concludes 
with a discussion of optimal reliability and availability of cloud - based applications.  

   11.1    ARCHITECTING FOR VIRTUALIZATION AND CLOUD 

 This section discusses the factors and tradeoffs to consider when architecting for 
virtualization and the cloud such as designing for high availability, multitenancy, and 
coresidency. 

  11 
RECOMMENDATIONS 

FOR ARCHITECTING 
A RELIABLE SYSTEM     

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.



210 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM  

   11.1.1    Mapping Software into VMs 

 Virtualization provides a means of packaging software so that it may be easily installed 
and scaled. One of the decisions in architecting an application with virtualization is 
determining how to best map the VMs for the appropriate user model to maximize ease 
in setting up redundancy, scaling, and distribution and meeting latency requirements. 
Some of the factors to take into consideration are:

    •      Growth within the Failure Group .      If one of the components is active – standby 
and the other is  N     +     K , then the growth patterns are different for those two com-
ponents and suggest separate VMs so that another  “  N  ”  instance can be created 
without also needing to add the active - standby component as well.  

   •      Ease of Growth .      If growth of one component always necessitates the growth 
of the other, then a single VM may be more appropriate to facilitate application 
scaling.  

   •      Architecture for the Application .      If the application is made up of separate com-
ponent types, such as a front end and a back end that don ’ t share any resources, 
then that might suggest a clear separation of VMs; however, if the components 
do share resources or have tight latency requirements, then a single VM may 
work better.  

   •      Affi nity and Antiaffi nity Rules .        Affi nity and anti - affi nity rules guide which VMs 
can be coresident on a single hypervisor and which VMs should be deployed 
on different hypervisor instances on physically separate compute hardware. VMs 
that frequently communicate with each other may coreside on the same server 
to decrease message latency. Some VMs will be deployed to different hypervisors 
to assure that no virtualized server becomes a single point of failure for a critical 
service; see Section  12.4.1 ,  “ SPOF Analysis for Virtualized Applications ”  for 
more details. VMs such as the high availability manager and the applications 
may choose to reside on different servers to reduce recovery time due to the 
implications of a simultaneous failure of the VMs or the failure of the server they 
are coresiding on. See Section  11.1.4 ,  “ Software Redundancy and High Avail-
ability Mechanisms. ”   

   •      Hardware Agnosticism .      Although VMs should be hardware agnostic, the types 
or confi gurations of the hardware nodes may need to be taken into account to 
ensure the VM can perform well on that node.     

   11.1.2    Service Load Distribution 

 One of the key advantages of cloud computing is the ability to seamlessly distribute 
service load across multiple servers and across multiple locations and even across 
multiple cloud providers with the assistance of load balancers and policies. Load dis-
tribution in the cloud environment can be highly complex as it needs to take into 
account factors, such as subscriber affi nity, redundancy, latency, availability, security, 
regulatory issues, and capacity. 
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 From a customers ’  point of view, service must meet their specifi c requirements, 
such as latency, capacity, availability, security, as well as recovery time objective (RTO) 
and  recovery point object  ( RPO ) in the case of failure. Determination of an appropriate 
load distribution architecture that meets those requirements will consider:

    •      number of application instances;  

   •      redundancy of applications and data; and  

   •      proximity of application instances to end users.    

 Policies must be clearly defi ned to manage service distribution in accordance with 
latency, regulatory and security requirements. 

 When architecting the server confi guration to maximize load distribution, the 
distance between data centers should be considered, particularly if there is frequent 
data exchange between data centers (e.g., data synchronization across databases). When 
multiple cloud data centers offer disaster recovery protection, one must also assure that 
the data centers are far enough apart that no single force majeure event will impact 
more than one of the data centers.  

   11.1.3    Data Management 

 Data — both static (e.g., subscriber data) as well as dynamic (e.g., state or transaction 
level data) — are a critical part of a reliable service. Regardless of the type, all data must 
be redundantly stored and managed to survive failure of a component. Static data should 
be automatically provisioned to avoid errors, and any changes to the data should be 
logged or journalled. Data management is very complex in the cloud environment, since 
transactions can span multiple application instances and be stored in multiple locations. 
There are two types of mechanisms generally used to keep data synchronized: ACID 
( atomicity, consistency, isolation, and durability ) and BASE ( B asically  A vailable,  S oft 
state, and  E ventual consistency). 

 Mechanisms that possess  ACID    properties ensure transactional reliability. Many 
relational database systems provide ACID capabilities. These mechanisms should be 
used when transactional reliability and immediate consistency are essential to meet 
customer needs, as these mechanisms can be very resource intensive and may introduce 
latency into transactions. 

 When data consistency is required but can be performed over a longer period of 
time, mechanisms that support  BASE    may be used to provide a simpler, less resource -
 intensive solution. Many web services can take advantage of the less complex BASE 
properties. As an example, email services do not have to be instantly up to date, while 
many banking services do need immediate consistency when managing their transac-
tions. Nonrelational databases, such as  NoSQL    (not only  SQL  [ Structured Query Lan-
guage ]), are recommended for use in cloud confi gurations to provide better performance 
and scalability. NoSQL, described in  [NoSQL] , is a distributed database management 
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system that is nonrelational and does not use SQL as its query language. It has a simple 
infrastructure (i.e., based on a key - value model), has BASE properties, and thus lends 
itself to lower latency and increased scalability. Facebook developed a NoSQL - type 
distributed storage system called Cassandra   to manage its great amounts of data across 
many servers with high availability, high reliability, and scalability  [CASS] . Cassandra 
supports a confi gurable level of replication and a failure detection mechanism shared 
by the nodes in the system, which offers a high availability solution. Google developed 
its own distributed storage system called Bigtable  [Bigtable]  to manage large amounts 
of data for many of its applications, such as Google Earth. 

 Georedundancy can also enhance the availability of the data by providing data 
access at multiple locations thereby mitigating the impact of a failure of one of the 
locations. Data sharding or partitioning of the data into multiple smaller databases 
rather than one large database is a way to provide added robustness as well as improved 
performance in accessing data due to the smaller table size. An example of sharding is 
to create instances of the database based on subscribers ’  last names (e.g., [A – G], [H – N], 
[O – T], and [U – Z]). If the server that is storing the subscriber data for [A – G] fails, then 
its redundant copy can serve the associated users; even if there is only one copy of the 
[A – G] subscriber information or a dual failure occurs associated with the data for that 
set of subscribers, then subscribers with the last names starting with [H – Z] should not 
be impacted at all by the failure(s). 

 Another performance improvement that is gaining popularity in the industry is the 
use of in - memory databases. With virtualization, it is feasible that an application can 
request suffi cient RAM so that it can store its data in - memory and realize improved 
access latency and reliability.  

   11.1.4    Software Redundancy and High Availability 
Mechanisms 

 Services must be architected with redundancy (even georedundancy) at the software 
and hardware levels, and with high availability mechanisms at their foundation. 
Robust application platforms generally provide some type of failure detection, report-
ing, and recovery mechanism as discussed in Section  3.6 ,  “ Redundancy and High 
Availability. ”  Virtualization software assisted by the hypervisor often also provides 
capabilities that detect hardware failures and recover the application on a different 
server as discussed in Section  5.4.2 ,  “ Virtualized Recovery Options. ”  The hypervisor 
can also detect VM failures and restart the failed VMs. In order to meet customer 
reliability and availability requirements, an assessment must be performed on the 
virtualized application and its internal high availability mechanisms to determine 
whether it can meet customer requirements with its internal mechanisms alone or 
whether the virtualization high availability mechanisms should be added to handle 
those failures not being covered by the internal high availability mechanisms. If the 
application does not meet availability requirements with internal mechanisms alone, 
then the high availability and fault tolerance capabilities of the virtualization software 
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should be evaluated to see whether those capabilities would better ensure that require-
ments could be met. 

 Another architectural consideration for high availability management is ensuring 
that the high availability manager is itself redundant, preferably active – active. In the 
case of an active – standby high availability manager, if both the high availability 
manager as well as the application instance were to fail at the same time due to software 
or hardware failures, then the impact might be greater and the recovery time might be 
longer since the high availability manager would need to recover before executing any 
necessary service recovery actions. 

 In addition to making sure that suffi cient high availability mechanisms are in place, 
the notion of  “ design for failure ”  is important. Design for failure puts the emphasis on 
recovering from failures rather than simply trying to prevent failures. Particularly in 
the case of very large cloud - based systems, failure of some kind (software or hardware) 
is very likely so it is important to be able to quickly and automatically detect and 
recover from those failures. Netfl ix uses the colorful term  “ Rambo architecture ”  to 
describe this aggressive design - for - failure vision that  “  each system has to be able to 
succeed, no matter what, even all on its own  ”   [Netfl ix10] . Failure mode effects analysis 
(FMEA) of all likely failure scenarios is a best practice. It is also critical to provide 
manual means of recovery in the event that the automated mechanisms are not perform-
ing properly or that the failure was uncovered, that is, not automatically detected and 
recovered. Since manual intervention is often error prone (especially when executed in 
the stressful context of an emergency recovery action), it is essential that procedures 
are well documented and well tested by the responsible maintenance staff. 

 The  recovery - oriented computing  ( ROC ) described in  [ROC]  also discusses the 
notion of recovering from failures rather than avoiding failures. ROC emphasizes 
several key areas for building robust software:

    •      redundancy and isolation — isolating a failed component, letting its redundant 
mate function while it is being recovered;  

   •      support for undo — recognizing that humans will make mistakes and providing a 
way to back out of an erroneous operation;  

   •      diagnostic support — in order to identify the failure and its cause quickly to 
facilitate recovery;  

   •      verifi cation of recovery mechanisms — to ensure that the recovery mechanisms 
are solid and robust; and  

   •      model availability/dependability of the product — as a way to gauge how well it 
is performing.    

 In addition to the above, preventative actions should be taken such as:

    •      Provide frequent backups of software images and data across sites.  

   •      Automate and regularly perform disaster recovery testing so that the tools and 
staff are prepared in the event disaster recovery is needed.  

   •      Create health checks that verify the health of the system components.  
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   •      Perform data integrity check and correction audits.  

   •      Verify automatic failure detection and recovery mechanisms by periodically 
introducing faults or failures into the system to ensure that proper recovery takes 
place. These failures may include less graceful scenarios, such as failing an 
instance without fi rst draining its work load.    

 Even in the best designed system, failures will occur in the hardware, software, and 
network. Architecture, design, implementation, and testing must thus consider failures 
at every level.  

   11.1.5    Rapid Elasticity 

 Rapid elasticity is a powerful cloud mechanism that can provide automatic scaling and 
descaling of hardware resources resulting in more effi cient usage of resources, as well 
as mitigation of the risk of overload conditions. As indicated in Section  7.4 , elasticity 
can result in a VM increasing its resources (vertical growth) or an increase in the 
number of VMs (horizontal growth within the data center or outgrowth into a different 
data center). 

 To maximize the effi ciency of rapid elasticity, resource monitoring, metrics, and 
thresholds must be put in place, as well as hysteresis to detect when resources are 
reaching their capacity so that the needed growth mechanism (as dictated by policy) 
is triggered. For example, if an application has reached its threshold of CPU usage, 
then an elasticity mechanism should be triggered to allocate additional resources. 

 Although there are risks associated with rapid elasticity as explained in Section 
 7.7 , there are ways to mitigate those risks. Rapid elasticity requires applications to be 
designed:

    •      to manage scaling and descaling;  

   •      to provide accurate monitoring and recording of resources and performance; and  

   •      to support well - defi ned policies and robust trigger mechanisms to automate and 
reliably accomplish the growth and degrowth of the application.    

 System testing must be performed with varying levels of offered load, generating traffi c 
peaks to trigger application growth and low traffi c points to trigger degrowth scenarios 
to ensure that the applications and service orchestration infrastructure can manage the 
changes in confi guration reliably.  

   11.1.6    Overload Control 

 In the dynamic scaling environment of cloud, it is possible to reduce the amount of 
time a system is in overload by taking advantage of rapid elasticity to meet spikes in 
offered load. Overload control mechanisms in traditional systems issue alarms based 
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on meeting or exceeding defi ned capacity thresholds resulting in the rejection or shed-
ding of traffi c according to the severity of the alarm. Service orchestration can take 
these same alarms and trigger cloud management mechanisms, such as rapid elasticity, 
to instantiate a new instance of the application and reloadshare traffi c to include the 
new instance. In this way, the overload condition could be mitigated and perhaps even 
eliminated. Native overload control mechanisms should still be in place for situations 
in which elastically grown application capacity does not come online fast enough and 
as a backup when the scaling attempt does not succeed.  

   11.1.7    Coresidency 

 The server consolidation model provides a means for multiple applications to reside on 
the same physical server. Server consolidation has the following benefi ts:

    •       Operational expenditure  ( OPEX ) savings based on reduced ongoing support of 
the equipment (e.g., reduced hardware, power, cooling, and space costs, as well 
as staff to monitor and manage the equipment).  

   •       Capital expenditure  ( CAPEX ) savings in the acquisition of the equipment (non-
cloud deployment, only).    

 Challenges include:

    •      Increased impact of server failure due to increased number of applications sup-
ported on a particular server.  

   •      Potential vulnerability to  “ noisy neighbor ”  applications that impact access to 
resources for the target application.  

   •      Hypervisor becomes a single point of failure that impacts all VMs under its 
control.  

   The challenges should be mitigated through the selection of a high availability archi-
tecture (see Section  3.6 ,  “ Redundancy and High Availability ” ) that supports server or 
site failure recovery and rapid elasticity to manage changes in capacity. Thorough 
robustness testing of the confi guration should be performed, including testing of the 
workfl ows with failure and very high capacity loads to verify the robustness of the high 
availability and elasticity mechanisms.  

   11.1.8    Multitenancy 

 Multitenancy entails the sharing of hardware resources by independent applications 
with different user populations. Similar to the coresidency case, it is based on the server 
consolidation model. Multitenancy has the same cost benefi ts as coresidency, as well 
as the same challenges. 
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 The challenges should again be mitigated through the selection of a high 
availability architecture (see Section  3.6 ,  “ Redundancy and High Availability ” ) that 
supports server or site failure recovery and rapid elasticity to manage changes in capac-
ity. Thorough robustness testing of a multitenant confi guration should be performed 
to insure tenant isolation, including testing of the workfl ows under various failure 
scenarios (of an individual tenant, multiple tenants, and the entire server) and with high 
capacity loads (of an individual and multiple tenants) to verify the robustness 
of the high availability and elasticity mechanisms.   

   11.1.9    Isochronal Applications 

 Isochronal applications have special needs since it is essential that they do not suffer 
latencies that disrupt the quality of their service. As discussed in Section  7.6.3 ,  “ Service 
Latency Risk, ”  resource contention, real - time notifi cation latency, and virtualization 
overhead can contribute latency for virtualized confi gurations. While virtualization 
overhead is likely to be fairly consistent on a particular virtualized platform, latency 
due to resource contention and real - time notifi cation can vary based on the behaviors 
of the other applications that are sharing processing, storage, networking, and memory 
resources with the target application. Latency variations over time naturally make it 
harder to maintain the strict real - time requirements of isochronous services. 

 Thus, architects for isochronous services should:

   1.     Explicitly characterize the real - time isochronal expectations for the virtualized 
platform, such as maximum notifi cation latency characterizing how  “ late ”  a 
real - time notifi cation interrupt can be and notifi cation jitter characterizing the 
maximum acceptable variation in notifi cation latency.  

  2.     Determine if it is technically feasible for the target platform or IaaS service to 
meet these requirements.  

  3.     Determine what architecture and confi guration is recommended for optimal 
isochronous performance on the target platform or IaaS service.  

  4.     Prototype and test the isochronous application service to validate the technical 
feasibility of meeting the application ’ s service requirements on a virtualized 
platform.  

  5.     If the quality of service offered by the prototype is acceptable across a range 
of test scenarios, then move forward with the architecture. If the quality of 
service is not consistently acceptable, then reconsider the application archi-
tecture and/or the decision to virtualize the isochronous/real - time service(s).      

   11.2    DISASTER RECOVERY 

 As indicated in Section  9.3 ,  “ Virtualization and Disaster Recovery, ”  virtualization 
simplifi es traditional disaster recovery by relaxing the compatibility requirements on 
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hardware employed on the recovery site and allowing applications to share servers and 
server resources with other applications. Cloud offers additional mechanisms, such 
as elasticity and disaster recovery as a service, as explained in Section  9.4 ,  “ Cloud 
Computing and Disaster Recovery. ”  To maximize the capabilities of virtualization and 
cloud and minimize RTO and RPO times, the following recommendations should be 
considered:

    •      Ensure that target sites are located a distance away from the failed site and meet 
any legal and regulatory requirements assumed for the service in accordance with 
policies.  

   •      Choose target servers (i.e., server where recovered application will be installed) 
that meet the computing, network, and storage requirements for the applications 
(not usually necessary for cloud deployments).  

   •      Ensure that copies of the application software and data are easily available 
(e.g., vaulted) for prompt recovery on the target server at the disaster recovery 
site.  

   •      Provide disaster recovery tools and procedures that can meet the RTO and RPO 
requirements for that application.  

   •      Ensure that disaster recovery plans are well defi ned, documented, and 
tested.  

   •      If rapid elasticity at the georedundant cloud data center is being used for the 
service to recover in a disaster scenario, then the requirements listed in Section 
 9.4  must be met.     

   11.3     IT  SERVICE MANAGEMENT CONSIDERATIONS 

 Cloud - based solutions share the same types of service management activities as tradi-
tional systems. Just as with virtualized systems, cloud - based mechanisms can be used 
to mitigate service impact during these activities by manually migrating active VM 
instances to other servers while maintenance activities, such as hardware or software 
upgrades, are being carried out. If service must be returned to the original server, then 
the VM can be migrated back to that server once the maintenance activity has com-
pleted. In order to leverage virtualization and cloud mechanisms, care should be taken 
to ensure that there are available resources to support an active system while parts of 
the system are undergoing maintenance (e.g., not putting the standby instance on the 
same server as the active instance during an activity that requires the entire server to 
be taken out of service). 

   11.3.1    Software Upgrade and Patch 

 Virtualization provides the ability to manage VMs on different software versions, even 
on the same hardware server. This capability greatly facilitates software upgrade and 
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  TABLE 11.1.    Example Service Transition Activity Failure Mode Effect Analysis 

   Event     VM or Cloud Mechanism Used  
   Impact on Affected VM 

Active Transactions  

  HW upgrades    Live migration of all VMs    Minimal impact 
(migration time)  

  HW growth/degrowth    Live migration of all VMs    Minimal impact 
(migration time)  

  Firmware patches and 
upgrades  

  Live migration of all VMs     Minimal impact 
(migration time)  

  Hypervisor software 
upgrades and patches  

  Live migration of all VMs    Minimal impact 
(migration time)  

  Host OS security 
patches  

  Live migration of all VMs     Minimal impact 
(migration time)  

  Application software 
upgrades and patches  

  Creation of new release VM 
instance on server  

  Minimal impact   

  VM instance growth/
degrowth  

  On - demand self - service    No impact  

patch activities through the installation of VM(s) on the new software version alongside 
the VM(s) running on the old software version. The new software version VM(s) are 
activated (and synched if needed with the old version), and a portion of the traffi c is 
directed (e.g., via routing table updates) toward the new version instances. Once the 
new version has been verifi ed to work suffi ciently well, current traffi c is allowed to 
complete on the old version instances and remaining traffi c is routed to the new 
instances. Service impact should be minimal with this mechanism.  

   11.3.2    Service Transition Activity Effect Analysis 

 A service transition activity effect analysis is usually organized as a table similar to a 
FMEA (see Section  5.1.3 ,  “ Failure Mode Effects Analysis ” ) table, with service transi-
tion activities as rows and service impact in the columns. As with a FMEA table, cells 
showing unacceptable service impact should be highlighted, and system architects 
should consider options to mitigate the unacceptable service impact. Table  11.1  gives 
a sample service transition activity effects analysis for a virtualized application in a 
cloud environment that takes advantage of the cloud mechanisms of live migration 
and on - demand self service to minimize service impact. Since virtualization provides 
containment for the VM instances, maintenance activities directed to a particular VM 
instance should only affect that VM instance, while activities directed toward the 
server, hypervisor, and host components may affect all hosted VMs. With mechanisms 
such as live migration, most service transition activities are capable of being executed 
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with little or no service impact (e.g., service impact from time suspending active VM 
to time traffi c is rerouted to newly activated VM). Note that some service transition 
activities are nonservice impacting with traditional techniques; however, the table will 
indicate situations in which live migration and on - demand self service are used. Hard-
ware growth and degrowth activities will likely require load balancing and rerouting 
of traffi c. If degrowth takes place traffi c served by the impacted component will be 
drained and redirected to remaining components. Many of the service transition activi-
ties entail upgrades (major changes) or patches (minor changes) to a particular VM (or 
its components such as the application or guest OS) or shared components (such as the 
hardware, fi rmware, hypervisor, and host OS).    

   11.3.3    Mitigating Service Transition Activity 
Effects via VM Migration 

 Service transition activities for traditional deployments, such as hardware or network 
upgrades may entail extensive reconfi guration and often produce service impact and 
accrue service downtime that is not acceptable to the end user. Virtualization can miti-
gate downtime and reduce or eliminate any user service disruption through the live 
migration of VM instances to another compatible host computer just prior to the time 
the maintenance operation is to be performed. This frees up the server so that the 
administrator can complete the needed maintenance when no production VM instances 
are executing on the target system. The maintenance activities themselves will be less 
complex since they do not have to worry about disrupting service while the activity is 
being performed since service is being provided on other computers. Since the activities 
are planned, the resources can be set up in advance, and a graceful migration of traffi c 
can be put in place to further minimize service disruption of existing transactions. Using 
live migration the hypervisor moves the VM instance upon request to a different host 
computer. Live migration supports dynamic load balancing of virtualized resources and 
dynamic failover support to ensure little or no service impact during the migration. 
Live migration is depicted in Figure  11.1 . VMs are suspended on the source server and 

     Figure 11.1.     Virtual Machine Live Migration.  
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resumed on the target server. Hypervisor and VM state information is copied as well 
to provide a seamless transition for users involved in active transactions during the 
migration.   

 The basic steps for performing a live migration are:

   1.     A live migration of virtual machine hosting  “ App ”  between two hosts  “ A ”  
(active) and  “ B ”  (alternate) within the same failover cluster is requested.  

  2.     An alternate VM instance is created on host  “ B. ”   

  3.     The initial memory state is copied from the VM instance on host  “ A ”  to the 
VM instance on Host  “ B ”  over the live migration network.  

  4.     Any memory pages that were changed during the copy process (dirty pages) 
are marked, and the pages are copied over iteratively.  

  5.     The VM instance is suspended or paused on host  “ A, ”  and the state of the VM 
instance is copied to host  “ B. ”  The VM instance is activated on host  “ B, ”  an 
address resolution protocol is issued to update routing tables, and the VM 
instance on the  “ A ”  is removed. Since the VM instance on node  “ A ”  is not 
paused until the VM instance on node  “ B ”  has been installed and synched with 
the source, users should experience no service disruption.    

 Key benefi ts of using live migration to minimize service transition downtime include:

    •      Minimizing service impact on users. Service transition activities (e.g., extensive 
hypervisor software, hardware or IP confi guration changes) that are traditionally 
service impacting and result in long periods of downtime can be performed 
without service impact, thereby meeting a common customer requirement for 
continuous service availability.  

   •      Freeing up the server resources allocated to the VM so that it can be serviced 
without trying to maintain some level of service for that VM. This should make 
the procedures much less complex.    

 The challenges of the live migration approach are:

    •      Sometimes need to migrate back to the source server (host A) once the mainte-
nance activity has completed (e.g., due to latency concerns). This usually needs 
to occur during the same maintenance interval; however, it is an optional activity 
and may not be necessary in most cloud solutions.   

   •      The target (host B) server must have suffi cient resources to successfully manage 
service during the maintenance activity.  

   •      The live migration must not disrupt the other VMs that reside on the server. 
Robustness testing must verify that live migration of a single VM does not 
adversely impact other VMs on the server. This is true of both the source as well 
as the target servers.      
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   11.3.4    Testing Service Transition Activities 

 Standard robustness testing includes routinely testing basic reliability mechanisms (e.g., 
failovers, process restarts, component reboots) and random injection of faults at various 
levels (e.g., process, VM, server, network, and data) to ensure that the system can 
recover properly and maintain some level of service during the recovery and that the 
monitoring systems correctly report failures and status. In cloud environments, confi gu-
rations are more fl uid and apt to change once put into service. As a result, some appli-
cations would benefi t from exercising these reliability mechanisms in active systems 
to make sure they are still properly functioning in the changing confi gurations under 
varying traffi c patterns. Note that this may not be recommended for highly critical 
services, but does provide a means of verifying that high availability mechanisms are 
working well so that weaknesses are identifi ed and resolved before they result in service 
outages. As an example, Netfl ix deploys their so - called  “ chaos monkey ”     [Netfl ix11]  to 
occasionally kill running VM instances in their production system, and thus assure that 
high availability mechanisms are running at top performance. Per  [Edberg] , Netfl ix 
deploys a  “ simian army ”    of agents, including a latency monkey alongside the chaos 
monkey, to impair aspects of their solution to assure that automatic mechanisms perform 
optimally and give operations staff more practical experience with the high availability 
behavior of the Netfl ix solution.  [Hamilton]  goes even further with the following blunt 
advice:  “ [I]f testing in production is too risky, [then] the script isn ’ t ready or safe for 
use in an emergency. ”   

   11.3.5    Minimizing Procedural Errors 

   Procedural errors arise due to one or more of the following:

    •      Documented or undocumented procedures executed by human was wrong, 
ambiguous, or misleading.  

   •      User interface was ambiguous, misleading, or wrong.  

   •      Human erroneously entered wrong input.  

   •      Fatigue especially during the night shift or panic during emergency recovery.  

   •      Human executed wrong action, neglected to execute correct action, or executed 
actions out of sequence.  

   •      System failed to check input or system state prior to executing requested 
operation.    

 Best practice for designing highly reliable procedures is to focus on three broad 
principles:

   1.     Minimize human interactions.  

  2.     Help the humans to do the right thing.  

  3.     Minimize the impact of human error.    
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 Service transition tools and procedures should have the following requirements:

    •      Automation (e.g., service orchestration) shall be used to replace manual 
procedures and make use of mechanisms, such as live migration when 
appropriate.  

   •      The reliability requirements associated with the service transition activity (e.g., 
 x  seconds of service downtime) must be fulfi lled.  

   •      Use of the  Open Virtualization Format  ( OVF ) or similar format should be used 
to provide confi guration information so that it can be clearly defi ned and vali-
dated by the tools. The OVF provides a fi le format and detailed specifi cation that 
makes it easy to confi gure the virtual infrastructure, including CPU, memory, 
networking, and storage for each VM in a standards - based way so that it will 
work under any hypervisor that is OVF compliant. By using the OVF format or 
another similar format, each VM instance or infrastructure component specifi ed 
can also be validated during installation. In this way, many of the errors that 
occur in confi guring the system can be eliminated, lessening the probability of 
procedural errors arising from errors in confi guration.  

   •      It must be possible to create and confi gure an updated instance of the application 
while running the old version, and to seamlessly stop the old version and activate 
the new once it is ready. This may be performed on the same server or on a dif-
ferent server dependent upon the type of maintenance activity and the availability 
of resources.  

   •      Clear, accurate documentation and training must be provided for those managing 
the service transition activity.  

   •      Thorough testing of the maintenance procedures must be performed to ensure 
the procedures meet the reliability requirements for service transition activities. 
Virtualization can be used to perform these procedures on a test application 
instance.    

 Cloud computing provides mechanisms that automate many of the procedures, such 
as VM creation and installation, thereby minimizing human interactions. The mecha-
nisms try to help the humans do the right thing by providing easy - to - use graphical user 
interfaces to guide the users through the operations and audits to verify their correct-
ness. Activities, such as software upgrade, may be performed on separate VM instances 
on different servers so as not to disrupt the active instances that are still providing 
service. This has the added benefi t of minimizing the impact of human error since 
the maintenance is being performed on nonactive instances and can be validated before 
activation. 

 As with all procedures, it is very important to provide clear, accurate documenta-
tion and training to further mitigate the risk of procedural errors. Virtualization can be 
used to practice procedures on dummy VM instances so humans can verify their under-
standing of the procedure and establish a baseline understanding of successful proce-
dural execution. 
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 Virtualization adds a layer of complex software between the application, platform 
and (guest) OS software, and the physical hardware resources that support that VM ’ s 
software. There is an inherent risk of failure when confi guring this complex software 
and its associated virtual devices. Human errors introduced while executing these 
procedures can result in service outages. However, the potential increase in proce-
dural failure rate due to inevitable operations, administration, maintenance, and provi-
sioning activities supporting the virtualization platform itself may be somewhat offset 
by available tools that use a graphical user interface to help set up the confi gurations, 
templates for the VMs, audits to validate the confi gurations, and remediation capabili-
ties in the event of failures. Thus, it is diffi cult to make general statements about the 
overall procedural failure rate implications of virtualization compared with native 
deployment. 

 In addition to procedural failures, there may be lost or incomplete transactions 
during activities, such as live migration, when traffi c is diverted from an active VM to 
another instance during the maintenance activity. In the case of a successful migration, 
the number of failed transactions will be minimal, but if the migration fails, there could 
potentially be a large number of transactional failures.  

   11.3.6    Service Orchestration Considerations 

 Service orchestration   can be a powerful tool for managing work fl ow effi ciently and 
reliably and should be used by applications that are using rapid elasticity or anticipate 
the need to create many instances of an application. Service orchestration can be used 
to instantiate and provision new VM or application instances and allocate their hard-
ware resources. Conversely, it can also degrow an application instance and release the 
resources. Service orchestration must robustly support the following functions:

    •      Automation .      Service orchestration must be able to automate tasks based on input, 
such as SLAs, KQIs, and policies, and coordinate the tasks needed to instantiate 
and provision a VM with its needed computing, storage, and network resources 
in accordance with that input. This is true whether it is creating a single instance 
of the VM or many instances of the same VM.  

   •      Managing Complexity .      Service orchestration must ensure that resources are cor-
rectly confi gured for the VMs and do not confl ict among the VMs.  

   •      Manual Request .      A front end must be provided to input the service requirements, 
confi gurations, policies, and service requests to support initial requests for service 
as well as to make manual requests to grow or degrow the service.    

 Particularly because service orchestration is capable of automatically creating instances 
of the application, it is important that it works fl awlessly and must be robustly tested 
at high loads through normal, as well as failure scenarios verifying that policies are 
followed, and activities such as growth and degrowth can be managed with no service 
impact. Clear error reports must be provided if there are failures during the orchestra-
tion, and changes must be able to be reversed if there is a critical problem.   
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   11.4    MANY DISTRIBUTED CLOUDS VERSUS FEWER HUGE CLOUDS 

 One of the essential characteristics of cloud computing is resource pooling (see Section 
 1.1.3 ), in which a pool of servers, storage devices, and other data center resources 
are deployed and shared across many users to reduce costs to the service provider and 
cost to the enterprise that pays for cloud services. Fewer huge clouds may be the con-
fi guration that can best take advantage of resource pooling ’ s ability to more effi ciently 
allocate resources and save installation and hardware costs, as well as the service pro-
vider ’ s ongoing operational costs for fl oor space in a data center, electricity, cooling, 
and hardware maintenance. However, users who are physically farther away from a 
data center are likely to experience higher service latency due to:

    •      Transmission Latency .      Light takes more than fi ve microseconds to travel a mile, 
so transmission latency accumulates for each mile of fi ber, coaxial cable, twisted 
pair, or air that data must travel between the user ’ s device and the cloud data 
center.  

   •      Equipment Latency .      Every router, switch, repeater, fi rewall, security appliance, 
and other interworking element in the transmission path between the user ’ s 
device and the application adds packet latency.    

 Cloud data centers that are physically closer to the users they serve generally have less 
transmission latency and fewer interworking elements that add packet latency. 

 While it is undoubtedly simpler and probably cheaper for a cloud consumer to host 
a single instance of their application in only one data center, this means that users who 
are distant from that one data center are likely to experience higher service latency than 
users who are physically close to the data center. The alternative is to deploy the appli-
cation to multiple data centers that are physically closer to end users. When deciding 
how many data centers to use and geographically where those data centers should be 
located, cloud consumers should consider:

    •      Service Latency .      Distributing applications to data centers physically close to end 
users can reduce service latency, jitter, and packet loss and improve network 
throughput by minimizing the networking equipment and facilities between the 
serving data center and the end user. Having many distributed cloud data centers 
provides the ability to place more servers closer to their users, while fewer huge 
clouds suggest that it is more likely that many users will be further from the sites. 
In addition, fewer huge clouds are likely to suffer heavier network throughput 
on those sites and have a higher likelihood of overload conditions.  

   •      Service Reliability and Availability .      Along with the improvement to service 
latency indicated for many local clouds, minimizing the networking equipment 
and facilities between the serving data center and the end user can also have a 
positive impact on service reliability and availability by reducing the number of 
components that can potentially fail while providing service to a particular user. 
From a total solution point of view, fewer data centers means there are fewer 
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servers to add into the availability calculation; however, the loss of any one of 
those will have a bigger impact on the solution availability and greater impact 
to the user population, as more of the users will have to be rerouted to another 
cloud. Conversely, more local clouds means adding more servers into the avail-
ability calculation; however, the loss of any one will have less impact on the total 
user population and will be less disruptive to the entire user population during 
recovery. Failure scenarios, such as a site disaster, will have a greater impact 
in the fewer huge cloud data centers confi guration since it is more likely that a 
larger set of users will be impacted and will have to recover to other clouds, 
possibly resulting in a reregistration storm or overload on the other site(s). The 
more local clouds confi guration provides a more geographically diverse environ-
ment, so the likelihood that multiple local clouds are impacted by the disaster is 
much less.    

 There are pros and cons to each approach. When architecting for the solution, reli-
ability, availability, latency, and cost need to be taken into account and prioritized, as 
well as location of the user community. For critical services where reliability, avail-
ability, and latency are of the highest priority and the user community is spread over 
many locations, many local cloud data centers may be the right confi guration. If cost 
is paramount or users are clustered in a few areas, fewer huge cloud data centers may 
be a better fi t.  

   11.5    MINIMIZING HARDWARE - ATTRIBUTED DOWNTIME 

 Five 9 ’ s system availability expectations means that prorated product - attributable 
service availability (i.e., hardware plus software and application software) will have 
a long - term average of less than 5.26 minutes per system per year. Hardware - attributed 
downtime is generally allocated one - tenth of the downtime budget for high avail-
ability systems, which gives 30 seconds per system per year to downtime attributed to 
hardware. This implies that a 99.999% system is generally built on a 99.9999% hard-
ware platform. Note that fi ve 9 ’ s availability expectations for systems — or six 9 ’ s 
for hardware platforms — applies only to product - attributable causes, rather than to any 
of the impairments to power, networking, physical environment, human, policy, and 
other factors that may contribute downtime attributed to the data center, the enterprise, 
or external factors (e.g., force majeure). Thus, one must not confuse product - attributable 
service availability with  “ all causes ”  service availability, which aggregates downtime 
for product - attributable, service provider - attributable, and external - attributable causes. 

 Typically, traditional systems are built with a fairly optimal hardware confi gura-
tion from which superfl uous components and assemblies have been omitted to mini-
mize the capital expense for hardware. In addition to reducing cost, this also helps to 
reduce the number of hardware components that can fail (i.e., lowering the FITs 
or increasing the hardware MTBF). In contrast, cloud computing — and to a lesser 
extent virtualization — puts more hardware into the service delivery path to maximize 
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operational fl exibility of the hardware resources. For example, traditional systems may 
rely on hard disks that are internal to the server blade or rack - mounted hardware so 
there is minimal (failable) hardware between the processor and the nonvolatile data 
storage. In contrast, since cloud computing architectures are built with resource sharing 
and elasticity as primary goals, nonvolatile data storage is inherently decoupled — often 
to  storage area network s ( SAN s) or  network attached storage  ( NAS ) — rather than 
relying on nonvolatile data storage within the computer servers. Decoupling storage 
from compute resources inserts IP networking infrastructure and storage control hard-
ware between the compute resource and the physical device offering nonvolatile data 
storage; obviously, that IP networking infrastructure and storage control hardware is 
vulnerable to failure in the cloud computing confi guration. Thus, a key architectural 
question becomes: is it feasible and likely that an application executing on virtualized 
hardware resources can have comparable hardware - attributed downtime to (often 
simpler) traditional high availability system hardware confi gurations? 

 We address this question in two steps:

   1.     What contributes to predicted hardware - attributed downtime in traditional 
system architectures?  

  2.     How can virtualization in the context of cloud computing minimize each of the 
predicted categories of hardware - attributed downtime categories?    

 The answers to these two questions drives recommendations for minimizing hardware -
 attributed downtime in cloud computing. 

   11.5.1    Hardware Downtime in Traditional High 
Availability Confi gurations 

 Let us consider the canonical example of a simple high availability system architecture 
built from an active – standby pair of servers. We will use the active – standby Markov 
model of Figure  11.2  and make the following canonical modeling assumptions:

    •      Each server has 100,000 hour MTBF (1/ λ ).  

   •      Ninety percent of hardware failures on both active ( C  A ) and standby ( C  S ) units 
will be detected and recovered in 15 seconds (1/ μ  FO ) with a success probability 
of 99% ( F  A ).  

   •      Uncovered hardware failures of active hardware will be detected in 30 minutes 
(1/ μ  SFDTA ).  

   •      Uncovered hardware failures of standby hardware will be detected in 24 hours 
(1/ μ  SFDTS ).  

   •      Manual hardware repair takes 30 minutes (1/ μ  REPAIR ) with a success probability 
of 99% ( F  M ).  

   •      Repairing duplex hardware failures takes 4 hours (1/ μ  DUPLEX ).      
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 Solving the Markov model yields the downtime predictions in Table  11.2 ; the downtime 
prediction is shown as a pie chart in Figure  11.3 .     

 Now consider what each of these downtime predictions in Table  11.2  means, in 
order of descending downtime contribution:

    •      State 4: Active Downtime Uncovered — Nominally 84% of Predicted Hardware 
Downtime .      This state captures the time service is unavailable because the hard-
ware has failed but the system has not yet detected the failure and thus no 
recovery actions have been taken. An uncovered failure is sometimes called a 
 “ silent ”  or  “ sleeping ”  failure, for obvious reasons. Uncovered downtime also 
includes the more challenging  “ dreaming ”  failure situations in which the hard-
ware incorrectly reports that it is fully operational (i.e., dreaming that it is 
healthy) when in fact it has failed. Note that even when it becomes apparent that 
service is unavailable to maintenance engineers, the fact that the hardware failure 

     Figure 11.2.     Active – Standby Markov Model.  
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  TABLE 11.2.    Canonical Hardware Downtime Prediction 

   State     Time (Minutes)     Percentage  

  4 — Active down uncovered    0.263    84  
  5 — Detected active down    0.022    7  
  6 — Duplex failed    0.004    1  
  7 — Failed failover    0.026    8  
  Overall downtime    0.315    100  
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     Figure 11.3.     Pie Chart of Canonical Hardware Downtime Prediction.  
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is not immediately visible via alarms and other standard fault management tools 
means that additional time must be spent to manually troubleshoot the problem, 
isolate the failure to identify the proper recovery action to execute, and at least 
a portion of this excess troubleshooting time is captured in this state.  

   •      State 7: Failed Failover — Nominally 8% of Predicted Hardware Downtime .      this 
state captures the downtime when automatic switchover to standby hardware has 
failed and manual recovery actions are necessary to successfully recover service 
onto the standby unit.  

   •      State 5: Detected Active Down — Nominally 7% of Predicted Hardware Down-
time .      This state captures the downtime when the high availability mechanism 
functions properly: the hardware failure is promptly detected, the proper recovery 
activation is executed, and service is recovered automatically in 1/ μ  FO  (i.e., 15 
seconds).  

   •      State 6: Duplex Failed — Nominally 1% of Predicted Hardware Downtime .      This 
state captures the rare state in which both active and standby hardware units are 
down simultaneously. Enterprises with good operational policies will repair 
failed primary units fast enough that the window of simplex exposure (i.e., opera-
tion with a single, unprotected hardware unit) is short enough that this sequential 
failure scenario is very rare. The more likely scenario is that the standby unit 
experiences an uncovered hardware failure that does not promptly present an 
alarm, so the system is actually simplex exposed when the active hardware unit 
fails; the fi rst indication the enterprise has that the standby unit had failed is when 
service fails to recover following failure of the active unit. The standard mitiga-
tion for this risk is to periodically execute routine switchovers to verify that the 
standby unit is fully capable of serving users. The more frequently the routine 
switchovers are executed, the lower the risk of unknowingly being simplex 
exposed.    
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 Now consider how each of these canonical downtime predictions is affected in a virtual-
ized cloud computing environment:

    •      State 4: Active Downtime Uncovered — Nominally 84% of Predicted Hardware 
Downtime .      Virtualization adds an additional layer of system software between 
the underlying hardware and the application software, and it is possible —
 although perhaps not likely — that the virtualization layer will identify some 
hardware failures that the guest OS and platform plus application software fail 
to detect. In some cases, mature native platforms or applications will include 
sophisticated auditing mechanisms that continually probe the hardware to detect 
failures or degraded performance before a service outage occurs; these mecha-
nisms boost the hardware failure coverage of platforms and applications that 
support them. If the virtualized platform does not support the same level of 
hardware auditing that was supported on the native platform and the application 
does not appropriately adapt and deploy the auditing on the virtualized platform, 
then the effective hardware coverage for that application could be lower (worse) 
than for native confi gurations. When multiple applications are consolidated onto 
a virtualized hardware platform, such as in server consolidation or cloud comput-
ing usage scenarios, then the effective hardware coverage should ideally be the 
product of the hardware coverage factors of the applications sharing the virtual-
ized hardware. Hopefully, the fi rst application to encounter failed hardware on a 
virtualized platform (e.g., by attempting to access a failed hardware device or 
resource) should raise an alarm, and thus cause the hypervisor and infrastructure 
software to proactively trigger appropriate hardware recovery actions and thereby 
minimize time spent by applications in the  “ active downtime uncovered ”  state 
due to hardware failures. Theoretically, a more diverse suite of applications 
sharing hardware resources can effectively boost the hardware coverage factor 
enjoyed by all of the applications. Virtualized and cloud confi gurations in which 
only a single application executes on a hardware resource (e.g., a specifi c compute 
blade or rack mounted server) are likely to experience essentially the same hard-
ware coverage as the application would have with native deployment on identical 
hardware.  

   •      State 7: Failed Failover — Nominally 8% of Predicted Hardware Down-
time .      Although the hypervisor adds another layer of monitoring and control in 
the service recovery path, it is likely to be diffi cult for the hypervisor to differ-
entiate a failed failover from a successful failover. Thus, failed failover downtime 
is unlikely to be impacted by virtualization or cloud deployment.  

   •      State 5: Detected Active Down — Nominally 7% of Predicted Hardware Down-
time .      The downtime accrued by successful automatic failure detection and 
recovery will be nominally the same for both traditional and virtualized deploy-
ments. Note that it is theoretically possible that this time might be slightly 
reduced if the hypervisor detected a hardware failure faster than the traditional 
deployment scenario might, such as if another application running on the hard-
ware platform possessed a faster and/or more effective hardware coverage 
than the target application. In that case, the target application might enjoy an 
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availability boost because the neighbor applications are more vigilant than the 
target application.  

   •      State 6: Duplex Failed — Nominally 1% of Predicted Hardware Downtime .      
Cloud computing should reduce this category because a physical hardware repair 
(e.g., 4 - hour MTTR action) should never be the only way to make required 
hardware resources available to an application; there should always be some 
spare online or nearline capacity that can be rapidly engaged to address traffi c 
spikes or hardware failures. In addition, hardware resource sharing by multiple 
applications should assure that even if the standby instance of the target applica-
tion is not very effective at detecting failures of the underlying hardware, one of 
the active neighboring applications should promptly detect any hardware failure 
and trigger the hypervisor and cloud infrastructure software to migrate appli-
cations to operational hardware so the target application spends minimal time 
simplex exposed in state 2  “ standby down uncovered. ”     

 In addition, virtualization enables higher availability hardware confi gurations like 
dual network interface cards (NICs) and redundant array of inexpensive (or indepen-
dent) disk (RAID) to be used with unmodifi ed applications. Cloud computing elimi-
nates that capital expense that often discouraged enterprises from deploying RAIDs 
and redundant networking infrastructure for traditional application deployments. More 
importantly, the higher resource utilization enabled by cloud computing makes it easier 
to justify deploying higher availability hardware to support more applications. For 
example, with traditional application deployments, an enterprise must explicitly invest 
in hardware redundancy (e.g., RAIDs and dual NICs) for the hardware resources sup-
porting each individual application. The resource - sharing aspect inherent in cloud 
computing means that redundant hardware like dual NICs and RAIDs can be amortized 
across more applications, thereby reducing the cost for each application to benefi t from 
higher availability hardware confi gurations. 

 Therefore, although virtualization and cloud computing often exposes application 
instances to more fallible hardware, the overall downtime contribution from that larger 
aggregate hardware failure rate is often lower than the downtime contribution of tradi-
tional deployments because of the following factors:

   1.      Higher availability hardware confi gurations like dual NICs and RAID may 
become more cost effective in cloud computing than in traditional deployments , 
so a system deployed with application level fi le replication in traditional con-
fi gurations may be deployed with RAID in the cloud, thereby reducing the 
number of failures that must be recovered via the application level fi le replica-
tion mechanism.  

  2.      Higher effective hardware coverage may be experienced for both active and 
standby application instances because neighboring applications can also detect 
hardware failures , thus boosting the effective hardware coverage enjoyed by 
individual applications  
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  3.      Higher hardware coverage will be realized from purpose - built highly reliable 
storage chosen for cloud - based solutions .    

 Strategies to mitigate downtime by predicted state are summarized in Table  11.3 .     

   11.6    ARCHITECTURAL OPTIMIZATIONS 

 Virtualization and cloud technologies enable new architectures and business models for 
cloud - based applications to provide services that are more powerful and fl exible than 
with traditional methods. Since applications are no longer tied to specifi c hardware 
resources, those resources can be added or removed automatically based on changing 
workloads, service capacity, latency, and availability trends across the network. By 
leveraging this fl exibility, optimal architectures can be designed to meet the needs of 
the application based on its data (both volatile and nonvolatile), network, CPU, and 
storage usage, as well as its estimated capacity, latency, availability, and reliability 
requirements. Note that service providers and cloud consumers have somewhat 

  TABLE 11.3.    Summary of Hardware Downtime Mitigation Techniques for Cloud Computing 

   Predicted 
Downtime State  

   Predicted Traditional 
Hardware Downtime 

Contribution (%)     Cloud Computing Mitigation Strategies  

  4 — Active down 
uncovered  

  84    Running diverse applications on virtualized 
platform instances to maximize likelihood of 
prompt hardware failure detection and having 
hypervisor emulating detected hardware 
failures for VM instances that may not have 
already detected hardware failure.  

  7 — Failed failover    8    Essentially unchanged.  
  5 — Detected 
active down  

  7    Essentially unchanged, unless hypervisor can 
detect and emulate hardware failures faster 
than guest OS and application platform plus 
software mechanisms can.  

  6 — Duplex failed    1    Maintaining suffi cient spare online or nearline 
capacity so that manual hardware actions are 
never required to engage hardware resources 
to mitigate a hardware failure 

 Confi guring diverse application instances —
 including both active and standby instances —
 on each virtualized hardware platform to 
minimize risk of  “ silent ”  hardware failure 
impacting standby application instances  
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different views of optimization. Cloud consumers want to maximize the service 
reliability and availability performance for their applications despite inevitable failures 
at reasonable cost; cloud providers want to maximize their yield/revenue at minimum 
cost while delivering acceptable (but not perfect) service quality, reliability, and 
availability. This section considers optimization from the cloud consumer ’ s perspec-
tive; yield management of IaaS is not considered. A set of reliability and availability 
criteria are offered, followed by a discussion of how various aspects of application 
service architecture and operation can optimize those criteria. A case study for an 
enterprise web server is then provided that applies many of these mechanisms and 
strategies to maximize service reliability and service availability to help clarify their 
usage. 

   11.6.1    Reliability and Availability Criteria 

 There is no one size fi ts all architecture. Various categories of applications have 
fundamentally different requirements that permit different architectural options to 
tolerate and mitigate inevitable failures. For instance: fi nancial applications require 
very high data consistency while web search has weaker data consistency require-
ments. Likewise, anonymous services like web search that require no identifi cation, 
authentication, and authorization can recover user service to redundant servers or 
alternate data centers faster and easier than services that require users to identify 
and authenticate themselves before being authorized to access application -  and user -
 specifi c data. 

 From a reliability and availability point of view, the following service reliability 
and availability criteria are considered for optimization:

    •      Accessibility .      The service should be continuously accessible to users, which 
means that no routine or emergency maintenance activity like software upgrade, 
hardware replacement, network reconfi guration, capacity growth, or degrowth 
should cause service unavailability or downtime for users. In other words, the 
service should be continuously available 24 hours a day, 7 days a week, every 
week of the year, forever; this is sometimes called 24 by 7 by forever.  

   •      Retainability .      User sessions should be perfectly retained with no perceptible 
disruptions or loss of functionality from initial service access (e.g., logon) to 
orderly session completion (e.g., logoff), particularly after single - element fail-
ures or failover to another element within the data center.  

   •      Quality and Reliability .      Correct application transaction results, streaming, and 
data content, and so on, shall be delivered to the user with excellent service 
quality, including low service latency. Note that data consistency can impact the 
reliability of transaction results; an application that delivers a properly structured 
result to a user based on inconsistent (e.g., old and no longer valid) data may not 
be a correct result.  



ARCHITECTURAL OPTIMIZATIONS 233

   •      High Availability .      Any single failure can be automatically detected, isolated, and 
recovered with less than the maximum acceptable service disruption to users with 
negligible if any loss of volatile context information.  

   •      Disaster Recovery .      Application service shall be recoverable following disaster 
events within the application ’ s RTO to an alternate data center, and nonvolatile 
data will be recoverable within the application ’ s RPO. Unlike recoveries within 
the data center, active user sessions and volatile user data will likely be lost 
during disaster recovery due to the complexity and bandwidth requirements for 
maintaining such data across data centers.  

   •      Moderate Operating Expense .      Operating expense should be minimized through 
frugal use of cloud resources, including timely release of cloud resources that 
are no longer required, and automation of maintenance activities and recovery 
actions.    

 These criteria should be met with an effi cient solution that maximizes resource usage 
and minimizes operating expense.  

   11.6.2    Optimizing Accessibility 

 Continuously accessible systems are designed with redundancy and no single point of 
failure so that no planned maintenance action (e.g., software upgrade, hardware growth) 
or unplanned failure forces service to become unavailable or inaccessible for an unac-
ceptable period of time. In addition to component redundancy, services are built to 
detect, isolate, and recover from all types of failure, and often leverage the following 
techniques:

    •       Load balancers intelligently direct traffi c  to an application instance based on 
criteria such as application availability, workload, and proximity to user, and 
dynamically update the routing information based on automatic growth and 
degrowth realized by rapid elasticity.  

   •       All component instances are accepting some traffi c  to both eliminate recovery 
latency associated with startup and activation of redundant components and to 
maximize the likelihood that failures are promptly detected (rather than waiting 
until a  “ standby ”  application instance is activated to discover a previously unde-
tected failure).  

   •       Aggressive protocol recovery is implemented  through maximum retry counts to 
mitigate lost, damaged, and late IP packets.  

   •       Resilience is built into the service  on the client side or on the application side 
using one or more of the following techniques: 
    �      Managing resilience on the  client  side: Messages are buffered on the client side 

and resent to the same or alternate application instance upon detection of a 
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failure on the targeted instance or a response time out. This is managed with 
protocol support for retry (e.g., SIP and HTTP), short guard timers, limited 
number of retries (improved with heuristics on retry behavior), and client 
initiated recovery.  [Bauer11]  provides details on how to maximize recovery 
time using client initiated recovery.  

   �      Data needed to maintain service is cached on the  client  or on the  application  
to mitigate reliance on data access during times of service or communication 
disruption.  

   �       Applications  are architected for failure as discussed in Section  11.1.4 ,  “ Soft-
ware Redundancy and High Availability Mechanisms. ”  Since any instance can 
manage the workload of another, failures are quickly detected by the client, 
and traffi c is seamlessly directed to another instance for handling. The failures 
are also detected and recovered internally so that the instance is once again 
available for service.    

   •       Nonvolatile data are replicated and available to all application instances . 
Data are loosely consistent — with BASE properties rather than the more 
restrictive ACID properties used when the data are relatively static or the 
service does not require the most recent version to operate effectively. 
Services that do maintain and rely on transaction - level volatile data for reliable 
service will likely require databases with ACID properties to ensure data 
consistency.  

   •       Rapid elasticity is leveraged  so that instances of the application and its resources 
(including volatile and nonvolatile data) are easily and quickly added or removed 
automatically based on the customer traffi c needs. This is driven through service 
orchestration leveraging real - time data on traffi c loads, and operates based on 
thresholds and policies. Instances and resources can be added vertically within 
the server, horizontally within the data center, and through outgrowth into addi-
tional data centers as described in Section  7.4.2 ,  “ Elasticity Expectations. ”  Hard-
ware resources, including CPU, memory, and disk storage, are added or removed 
automatically based on changing application needs. This is supported by virtual 
resources and managed by the hypervisor.  

   •       Software and hardware upgrades can be performed seamlessly . VM containment 
supporting the ability to instantiate a new version of the application while the 
old version is still operating and live migration providing the ability to copy 
memory to another server that has an instantiated instance of the new version 
of the application to support more extensive upgrades can support this capabil-
ity. Graceful termination of a VM instance is available so that transactions 
are allowed to continue and terminate normally and are not lost during the 
migration.  

   •       Procedural tasks that are complex and error prone are automated  and made 
robust through the addition of health checks on the hardware resources to ensure 
they are ready for the procedure and audits on the data to ensure it is not cor-
rupted before or after the procedure.    

 Advanced architectural techniques that optimize accessibility:
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    •       Clients send a single request to multiple application instances in parallel , and 
use some intelligent algorithm to select the response (e.g., fi rst response, fi rst 
confi rmed response, plurality, or majority vote). This technique greatly simpli-
fi es routing of requests but adds complexity in selecting and managing the 
responses and reduces capacity (or increases load, depending on your perspec-
tive) because each transaction is processed by two (or more) application instances 
in parallel.  

   •       Client applications may even establish and maintain authenticated sessions with 
alternate servers  to eliminate reauthentication latency if the primary server fails 
and the client must redirect traffi c to the alternate server instance.  

   •        “ Rambo ”  architecture . Systems are built to expect and tolerate some failures 
that represent a degradation of some services but allow other services to perform. 
This technique provides increased availability for some services but does add the 
complexity of detecting, isolating the failure, deferring recovery, and determining 
that service can continue despite the failure. Designing with degradation allowed 
also entails understanding what the customer will tolerate for degraded services 
and which services are absolutely critical and not subject to degradation. For 
example, live streaming of video may be a critical service, while sorting through 
supporting movie reviews is a nonessential service.     

   11.6.3    Optimizing High Availability, Retainability, 
Reliability, and Quality 

 High availability mechanisms exist to detect, isolate ,and recover from failures. Service 
architecture should be assessed using techniques such as FMEA, as discussed in Section 
 5.1.3 ,  “ Failure Mode Effects Analysis, ”  to fl esh out all possible failure scenarios involv-
ing one or more of the components and confi rm that failures can be rapidly detected 
and properly handled, including preserving state and context data when applicable. 
Service retainability and reliability are managed by making state or other transaction -
 related information available to other application instances from a common storage area 
or by pushing state out of server instances into client and/or shared registries. Fault 
tolerance mechanisms help ensure that any data (volatile as well as nonvolatile) critical 
to service retainability is maintained and kept consistent. 

 Overload detection and control mechanisms are put in place to manage short - term 
spikes in traffi c when rapid elasticity cannot instantly accommodate changes in traffi c. 
Overload mechanisms should shed or turn away some traffi c during peaks to maintain 
the quality of most (or at least some) traffi c rather than degrading all traffi c or causing 
a component collapse or service failure.  

   11.6.4    Optimizing Disaster Recovery 

 Application instances are deployed to geographically distant redundant data center(s) 
to mitigate the risk of a force majeure event that renders a data center destroyed, inac-
cessible, or otherwise unavailable. Data centers are located far enough apart so that no 
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single disaster or force majeure event (e.g., earthquake, hurricane, and tsunami) will 
impact both the primary and recovery sites. All nonvolatile application and user data 
are replicated to a georedundant site frequently enough to meet the application ’ s RPO 
requirement, and suffi cient resources are available in the recovery data center (e.g., 
bandwidth to replicated data, and rapid availability of compute capacity and network 
bandwidth) to meet the application ’ s RTO requirement. Since incidents requiring recov-
ery to another data center are infrequent, they are generally designed to allow slower 
synchronization of nonvolatile data and loss of volatile state information during the 
recovery than in the intra - data center recovery cases to minimize wide area network 
(WAN) traffi c between the data centers. Service architectures which include many small 
data centers provide additional redundancy that can support a single data center failure, 
as well as the ability to optimize service latency by routing to the data center closest 
to the user. See Section  11.4  for details.  

   11.6.5    Operational Considerations 

 In addition to architecting, developing, testing, and deploying a robust solution, it is 
essential that high - quality IT service management policies and practices be used to 
manage operation of the solution. Beyond standard IT service management best prac-
tices (e.g., ITIL), the following operational topics warrant special consideration:

    •      Proactive Management of Spare Online and Elastic Resource Capacity .      Suffi -
cient spare online application capacity should be confi gured to simultaneously 
recover from typical failure scenarios (e.g., crashed VM instance) and to accom-
modate traffi c spikes and growth. Note that the size of the spare online capacity 
is infl uenced by the expected and committed elastic growth slew rate supported 
by the IaaS provider and the application itself, as well as the application ’ s elastic 
growth trigger points. Suffi cient spare online capacity should always be available 
to assure that all users are served with acceptable service quality and latency, 
even when traffi c grows and elastic growth is initiated.  

   •      Routine Testing of Robustness and Recovery Mechanisms .      Just as periodic 
disaster drills are a best practice to assure that disaster recovery mechanisms, 
plans, and procedures are correct, and give staff training and practice in executing 
those procedures, periodic validation of high availability mechanisms verifi es 
that automatic mechanisms operate correctly and that staff can recognize suc-
cessful automatic recoveries compared with unsuccessful recoveries that require 
manual corrective actions. Netfl ix ’ s chaos monkey and simian army  [Netfl ix11]  
are examples of the best practice for routinely testing robustness and recovery 
mechanisms.     

   11.6.6    Case Study 

 Service reliability and availability optimization concepts are best understood via an 
example. Although not all of the optimizations apply to all applications, this example 
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offers some specifi city and clarity to the concepts discussed previously in the case of 
a particular type of application. This section will show how these key concepts might 
apply to a hypothetical enterprise data centric web server application as depicted in the 
reliability block diagram (RBD) in Figure  11.4 . The hypothetical applications consists 
of a front - end/back - end arrangement in which front - end servers interact with client 
applications (e.g., web browsers) and back - end servers mediate transactions with non-
volatile application data. A particular user of the hypothetical application instance is 
served from data center  “ A. ”  User traffi c passes through a pair of load balancers, which 
distribute requests across a pool of front - end server instances, which handle user iden-
tifi cation, authentication, authorization, session and transaction context, user interface, 
and so on. Front - end server instances push copies of volatile user data into a pair of 
registry servers so that if one front - end server instance fails, then any other front - end 
server instance can rapidly retrieve the user ’ s volatile information from one of the 
registry servers. A pool of back - end server instances operates on the application 
data that is maintained in a storage array. Front - end servers pass request messages to 
back - end servers that are protected with short guard timers, and a front - end can retry 
a failed, lost, or late operation to another back - end server instance. Nonvolatile data 
storage is maintained in a RAID storage array.   

 Rapid elasticity is leveraged to improve accessibility through growth and degrowth 
of resources that are in line with the changing service needs. Figure  11.5  illustrates how 
the hypothetical application instance can grow horizontally. Front - end server instances 
can be created or destroyed, and the load balancers will intelligently distribute the 
workload across available front - end application instances. Note that even if the front -
 end server instance that was serving a particular user is destroyed to reduce front - end 
capacity, another front - end server instance can seamlessly recover the user ’ s volatile 
application state from one of the pair of registry servers. Likewise, back - end server 
instances can be created or destroyed, and front - end server instances will intelligently 
distribute their requests across the pool of available back - end servers; front - end servers 
will retry requests that may have been lost if a back - end server instance was destroyed 
to shrink back - end capacity.   

     Figure 11.4.     RBD for the Hypothetical Web Server Application.  
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 If the hypothetical application needs to grow beyond data center  “ A ”  based on its 
exceeding the capacity of data center  “ A ”  or to provide georedundancy for the service, 
then an additional set of load balancers, front - end servers, registry servers, back - end 
servers, and storage array are set up in data center  “ X ”  to support service outgrowth as 
depicted in Figure  11.6 . The application users ’  clients must receive an indication of the 
availability of the new data center via DNS, a traffi c redirection indication from the 
data centers, client reconfi guration, or through other mechanisms. For example, if we 
assume that each application instance is limited to a pair of load balancers and a pair 
of registry servers, then when the workload approaches the limits of either of those 
components the application should activate outgrowth and balance the workload to the 
outgrown application instance.   

 Components within each application instance rely on aggressive guard timers 
and retry strategies to assure that client requests are correctly served in less than the 
maximum acceptable service latency. Figure  11.7  illustrates this aggressive failure 
detection and recovery by a front - end server instance  “ F1 ”  for a failure of back - end 
server instance  “ B1. ”  Front - end server instance  “ F1 ”  receives a client request that 
requires a back - end server instance to respond to a request.  “ F1 ”  sends a request to 
back - end server instance  “ B1. ”  Assume that  “ B1 ”  fails prior to replying to a request 
from  “ F1. ”   “ F1 ”  awaits a response from  “ B1 ”  until a brief guard timer expires, and 
then retries the request to  “ B1. ”  Since  “ B1 ”  has failed and has probably not recovered 
service yet, the guard timer for the retry to  “ B1 ”  will also expire. Rather than making 
a second retry to  “ B1 ”  (which is unlikely to have recovered service in another few 
milliseconds if it failed to respond to the two previous attempts),  “ F1 ”  sends the request 
to an alternate back - end server  “ B2. ”  Assuming  “ B2 ”  is up,  “ B2 ”  should respond 
properly to the request before the guard timer expires. Note that since the guard timers 

     Figure 11.5.     Horizontal Growth of Hypothetical Application.  
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     Figure 11.6.     Outgrowth of Hypothetical Application.  

Back-End
Server Pool

Storage
Array

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Data Center “A”

User

Back-End
Server Pool

Storage
Array

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Grown Data Center “X”
Users’ clients discover 

new application instance 
in outgrowth data center 

via DNS, explicit 
redirection from existing 

data centers, client 
reconfiguration, or other 

techniques

     Figure 11.7.     Aggressive Protocol Retry Strategy.  
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     Figure 11.8.     Data Replication of Hypothetical Application.  
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were set to be much shorter than the maximum acceptable service latency,  “ F1 ”  
had suffi cient time to retry once to the original back - end server  “ B1 ”  and make one 
request to an alternate back - end server  “ B2. ”  There are a wide variety of retry strate-
gies that can be considered; the point is that the guard timers and retry strategy 
should be constructed so that failures can be detected and service recovered without 
exceeding the maximum acceptable service latency so the failure is masked from 
the user.   

 Note that volatile data (e.g., user session state) are replicated to a pair of registry 
servers so that if a front - end server instance fails and the load balancer redirects a user ’ s 
request to an alternate front - end server instance, then the alternate server instance can 
retrieve the user ’ s volatile data from the registry server to recover the user ’ s context to 
mask the effects of the front - end server failure. 

 Disaster recovery is supported via georedundancy and replication of non - volatile 
application data across multiple active application instances. Accessibility is further 
enhanced through replication of nonvolatile data to other data centers, allowing clients 
to send requests to those active georedundant application instances. Timely replication 
of nonvolatile data also factors into the RPO associated with disaster recovery. Volatile 
application data is generally not replicated between data centers due to WAN traffi c 
concerns. Figure  11.8  shows data replication between data centers.   

 With georedundancy and data replication between sites in place, if a disaster were 
to occur, disaster recovery plans and procedures can be activated automatically or 
manually to recover service in line with RTO and RPO requirements. Figure  11.9  
illustrates the redirection of client service to data center  “ B ”  when data center  “ A ”  
fails. As indicated, volatile data are lost since they are not replicated across sites, but 
nonvolatile data are preserved up to the time of the last data synchronization between 
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sites. Depending upon the cloud customers ’  application requirements, the interval of 
the nonvolatile data synchronization can be reduced so that minimal nonvolatile data 
are lost in these situations.   

   11.6.7    Theoretically Optimal Application Architecture    

 The theoretical limit of service availability across a pair of elements is derived in 
 [Bauer11]  and elsewhere as Equation  11.1 . 

   Availability Availability AvailabilityPair Element Element= × −2 22.

     Equation 11.1.   Maximum Theoretical Availability Across Redundant Elements         

 Essentially, this theoretical maximum assumes that a client has perfect knowledge of 
element availability and thus is always able to use whichever application instance is 
available at any time. The simplistic model underlying Equation  11.1  is based on the 
following technical assumptions:

   1.     Instantaneous detection of all failures with 100% accuracy.  

  2.     Instantaneous and fl awless identifi cation of the failed element so the proper 
recovery action can be initiated.  

  3.     Instantaneous and fl awless service recovery onto the redundant element.    

     Figure 11.9.     Disaster Recovery of Hypothetical Application.  
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     Figure 11.10.     Optimal Availability Architecture of Hypothetical Application.  
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 Unfortunately, real - world applications cannot meet all of these assumptions. Mathe-
matically, this means that aggregate service availability across a pair of data centers 
(measurement point 3 or MP 3) must be less than — and typically far, far less than — the 
theoretical availability based on primary data center availability (measurement point 2 
or MP 2). This is explicitly captured in Equation  11.2 . 

   MP MP (MP3 (2 2) 2)2< × − .

   Equation 11.2.   Maximum Theoretical Service Availability          

 Thus, the question becomes  what service architectures most closely approach the theo-
retical limit of Equation    11.2?   

 Figure  11.10  illustrates a confi guration of the hypothetical web server application 
with an advanced client that can approach the theoretical limit of Equation  11.2 . Essen-
tially, the client maintains simultaneous authenticated sessions with a pair of georedun-
dant application instances (i.e., in data center  “ A ”  and in data center  “ B ” ), to either 
send requests to both application instances in parallel (presumably using the fi rst correct 
response received) or to send requests to one application instance with short guard 
timers and aggressively retry the request to the georedundant application instance if the 
initial application instance failed to respond correctly before the guard timer expired. 
Obviously, many traditional application protocols and client implementations will not 
support failure detection and recovery strategies that are this aggressive, but one can 
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imagine how over time, application protocols and client implementations will evolve 
to support more aggressive strategies when optimal service reliability and avail-
ability is required. This architecture also assumes full internal redundancy within each 
data center and enough reserve capacity for one site to seamlessly manage all traffi c 
for both data centers if one of the data centers fails meeting near perfect availability 
at the expense of additional resources and complexity to ensure no loss of service 
or data.        
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     While traditional applications can often be installed and run on a virtual machine (VM) 
with little or no modifi cation, some additional  design for reliability  ( DfR ) diligence is 
appropriate to assure that it is both feasible and likely for the virtualized deployment 
to have reliability and availability as good as with traditional application deployment. 
More comprehensive design for reliability diligence — especially architectural work, 
analysis, development, and testing diligence — may even make it feasible and likely for 
the reliability and availability of a virtualized deployment to exceed that of traditional 
deployment. This chapter considers how design for reliability diligence changes for 
a virtualized application compared with a traditional native deployment of that same 
application.  

   12.1    DESIGN FOR RELIABILITY    

 Design for reliability     of traditional information and computer - based systems is well 
understood and documented in  [Bauer10]  and visualized in Figure  12.1 . The activities 
of traditional design for reliability are:

  12 

DESIGN FOR RELIABILITY OF 
VIRTUALIZED APPLICATIONS     

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.
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    •       Establish reliability and availability requirements  because all designs should be 
defi ned by clear and verifi able specifi cations.  

   •       Qualitative reliability analysis  assures that the high - level design is consistent 
with general, qualitative reliability and availability requirements.  

   •       Quantitative reliability modeling and budgeting  assures that it is technically 
feasible for the design to achieve the quantitative reliability and availability 
requirements over the long term. Budgeting quantitative targets for various 
system characteristics makes it more likely that overall system level targets will 
be achieved.  

   •       Robustness testing  verifi es the effectiveness of failure containment and high 
availability mechanisms by confronting the system with likely failure scenarios 
to assure that the system automatically detects, contains, and recovers the failure 
without unacceptable service impact.  

   •       Stability testing  verifi es that the system is stable and meets reliability expecta-
tions under a sustained heavy and mixed traffi c load.  

   •       Field performance analysis  compares actual fi eld performance with requirements 
and modeled results. Gaps with requirements and expectations drive reliability 
improvement roadmaps; gaps with model results drive refi nement of mathemati-
cal models and parameters estimates.  

   •       Reliability roadmapping  captures planned and proposed reliability/availability 
improving features, testing and other actions to mitigate gaps between customers ’  
expectations and actual or predicted system performance.      

 In addition, hardware reliability diligence was traditionally necessary to assure that 
the hardware platform supporting the application and platform software was likely to 

     Figure 12.1.     Traditional Design for Reliability Process.  
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maintain an acceptably low hardware failure rate throughout the designed service life-
time of the system.  

   12.2    TAILORING  D  F  R  FOR VIRTUALIZED APPLICATIONS 

 The virtualization application usage scenarios enumerated in Section  10.1  introduce 
new risks to service reliability and service availability that are addressed by tailoring 
traditional system DfR. Let us consider each of these usage scenarios individually: 

   12.2.1    Hardware Independence Usage Scenario 

   Assuming the hypervisor is very stable and offers a faithful and reliable virtualization 
of the hardware platform being virtualized, the hardware independence usage scenarios 
offer the following reliability risks beyond traditional application deployment:

    •      Not Making Virtualized Hardware a Single Point of Failure (SPOF) .      As dis-
cussed in Section  5.1.2 ,  “ Single Point of Failure Analysis, ”  high availability 
systems do not include any single points of failure. While traditional design for 
reliability diligence assures that there are no SPOFs in native deployment, one 
must be careful to assure that software modules that were deliberately tied to 
separate hardware in native deployment to prevent SPOFs are not mapped to 
VMs that could be confi gured on the same virtualized hardware platform (e.g., 
via antiaffi nity rules), thereby making that hardware platform an SPOF. DfR 
treatment of this risk is covered in Section  12.4.1 ,  “ SPOF Analysis for Virtualized 
Applications. ”   

   •      Meeting Hardware Downtime Budget .      Reliability diligence must verify that the 
expected  “ hardware independence ”  deployment confi guration does not accrue 
signifi cantly more hardware downtime than the native deployment. This risk was 
discussed in Chapter  6 ,  “ Hardware Reliability, Virtualization, and Service Avail-
ability ” ; DfR treatment of this risk is covered in Section  10.3.1 ,  “ Traditional 
System Downtime Budget ” ; and design considerations were covered in Section 
 11.5 ,  “ Minimizing Hardware - Attributed Downtime. ”   

   •      The Application ’ s High Availability Architecture Is Less Effective in Virtualized 
Confi guration .      Just as careful design and testing is necessary to verify perfor-
mance and reliability of native application ’ s high availability architecture, DfR 
diligence is necessary to assure that the application ’ s high availability architec-
ture runs properly on the virtualized infrastructure, especially that it does not 
confl ict with any automatic recovery or HA mechanism of the virtualized plat-
form itself. Thus, one should explicitly assure that the application ’ s HA mecha-
nism confi gured on virtualized hardware: 
   1.     Reliably detects all failures with latency comparable with native confi guration.  
  2.     Maintains acceptable service latency for failover, switchover or other recov-

ery actions on the virtualized confi guration.  
  3.     Properly contains failures to software modules or VM instances.      
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 The risks that were discussed in Chapter  5 ,  “ Reliability Analysis of Virtualization, ”  are 
addressed via qualitative and quantitative analysis (Sections  12.4 ,  “ Qualitative Reli-
ability Analysis, ”  and Section  12.5 ,  “ Quantitative Reliability Budgeting and Model-
ing ” ) and validated via robustness testing (see Section  12.6 ,  “ Robustness Testing ” ).  

   12.2.2    Server Consolidation Usage Scenario 

   Server consolidation increases the reliability and availability risks compared with 
the hardware independence usage scenario (Section  12.2.1 ) with the following addi-
tional risks:

    •       Resource sharing introduces contention risks  — resource sharing between 
applications — especially when resources are overcommitted to maximize resource 
utilization — increases the risk of occasionally experiencing signifi cantly longer 
latencies when acquiring or accessing resources. This increased resource latency 
can translate to higher service latency for application users. If workloads between 
consolidated applications are correlated, then service latency could degrade even 
further in busy periods. While applications and platforms should be confi gured 
so that literally no traffi c is served with unacceptably long service latency or ever 
dropped, it is possible that the observed service latency (e.g., 50th or 95th per-
centile) will be longer in busy server consolidation scenarios compared with 
simpler hardware independence usage scenarios.  

   •       Ineffective failure containment  causes error or failure of a coresident application 
to cascade and impact the other applications.  

   •       Resource sharing increases recovery latencies  — when multiple applications 
share a single hardware resource (e.g., computer server hardware), then failure 
of that shared resource can cause all consolidated (i.e., coresident) applications 
to simultaneously initiate recovery actions. If those consolidated applications use 
other common applications, like databases or registries, then failure of the shared 
hardware may push one or more of those common applications into overload 
when multiple applications attempt to recover simultaneously. This may cause 
some or all of the consolidated applications to recover slower than expected 
as the common database, registry, or other applications take longer to serve the 
aggregate recovery workload.    

 These risks are primarily mitigated by proper confi guration and operation of the hyper-
visor. Thorough robustness testing (see Section  12.6 ) validates that these risks are 
successfully mitigated. 

 In server consolidation deployments, the hypervisor may also be able to occasion-
ally boost the resource allocation to a VM instance to give it more resources (e.g., CPU 
allocation or network bandwidth) than the VM ’ s nominal reservation to address a traffi c 
spike. This brief resource boost may sometimes make it unnecessary to activate applica-
tion overload controls because suffi cient resources are made available to serve the spike 
without explicitly activating overload controls, like traffi c shaping or shifting. To take 
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advantage of this capability of the hypervisor, applications must be prepared for some 
variation in resource allocation.  

   12.2.3    Multitenant Usage Scenario 

 Although multitenant   deployment of VMs permits multiple independent instances of a 
single application to be consolidated onto a single virtualized platform, one must assure 
that the failure of one tenant ’ s application instance is fully contained so other tenants 
are not affected. This scenario increases reliability and availability risks beyond the 
server consolidation case when the consolidated multitenant instances share some 
resources (e.g., system confi guration data) but not other resources (e.g., tenant confi gu-
ration and user data), so rigid failure containment between tenants can be more chal-
lenging. In particular, one must assure that failure of one tenant instance does not 
cascade to other tenant instances, and that service transition activities properly apply 
to individual application instances rather than inadvertently impacting multiple tenant 
application instances. In addition, multitenancy introduces the risk of correlated or 
synchronized behaviors that can stress the underlying virtualized platform, such as 
when multiple application instances execute the same recovery action or periodic 
maintenance actions simultaneously.  

   12.2.4    Virtual Appliance Usage Scenario 

 As the virtualized appliance scenario fundamentally changes the entire industrialization 
model (i.e., software packaging plus supporting materials), all aspects of application 
industrialization like installation, upgrade, and license management must be re - verifi ed 
to assure that the virtualized appliance distribution offers the same service reliability, 
availability, and latency performance as traditional deployment.  

   12.2.5    Cloud Deployment Usage Scenario 

   While the earlier application deployments are statically confi gured, the cloud deploy-
ment usage model adds rapid elasticity to the mix, and thus adds the risk of elasticity -
 related failures. In addition, cloud service provisioning and orchestration, on - demand 
self - service, security, and other cloud characteristics introduce risks to service reliabil-
ity, availability, and latency. Cloud deployment risks and mitigations are primarily 
considered in Chapter  13 ,  “ Design for Reliability of Cloud Solutions. ”    

   12.3    RELIABILITY REQUIREMENTS 

 The market generally expects virtualized applications to deliver the same service reli-
ability and availability as that offered by traditional system deployments in which 
application and platform software is confi gured directly on physical hardware (rather 
than above a hypervisor). Thus, if the traditional system is expected to achieve 99.999% 
product - attributable service availability, then the virtualized application is typically 
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expected to be capable of achieving 99.999% service availability when run on a suitably 
confi gured and properly operated virtualized hardware platform. Likewise, if the market 
expects the traditional system deployment to achieve 99.999% service reliability (i.e., 
 ≤ 10 defects per million [DPM]), then the virtualized application should be capable 
of 99.999% service reliability ( ≤ 10   DPM) on a suitably confi gured virtualization plat-
form. This expectation of requirements parity is presumed to apply to all reliability 
requirements. 

 This section fi rst considers general service availability requirements, service reli-
ability and latency, and overload requirements, and online capacity growth and degrowth 
requirements. Requirements for live migration and service transition activities are then 
considered, and fi nally georedundancy requirements are discussed. 

 Regarding requirements notations: the  “  [A  |  B  ]  ”  notation is used to indicate that a 
requirement applies identically to both the  “  A  ”  reading and the  “  B  ”  reading, such as 
the same requirement applies to both  “ traditional system ”  and  “ virtualized application ”  
confi gurations. A  “  [C]  ”  notation indicates that  “  C   ”  is optional in the requirement and 
may be included when applicable, or omitted if not appropriate or not necessary. Angle 
brackets  “  <  ”  and  “  >  ”  indicate that a quantitative value should be included in the 
requirement; common recommended values are shown as  “   < 99.999% >   ” , and unspeci-
fi ed quantitative values are shown as  “  < X >  ” . 

   12.3.1    General Availability Requirements 

 The list below illustrates how the same general reliability requirements that apply 
to traditional system confi gurations can also be applied to virtualized application 
confi gurations 

  1.      [Traditional system  |  virtualized application] high availability confi gurations 
shall achieve  < 99.999% >  product - attributable service availability in production 
operation.   

  2.      [Traditional system  |  virtualized application] shall demonstrate compliance to 
service reliability requirements (see Section    12.3.2   ) and complete stability 
during at least  < 72 >  continuous hours of stability/endurance testing of mixed 
user and operational activities running mostly at engineered capacity .  “ Com-
plete stability ”  means no process failures, stable resource usage, and no degra-
dation in transactional reliability, latency or throughput, and so on.  

  3.      [Traditional system  |  virtualized application] high availability confi gurations 
shall support deployment with no single point of failure.   

  4.      The high availability [traditional system  |  virtualized application] confi guration 
shall automatically detect and recover from any single hardware or software 
failure within   < X >   seconds . This value  < X >  will be referred to as the  Maximu-
mAcceptableServiceDisruption    time throughout this chapter.  

  5.      Testing of the [traditional system  |  virtualized application] shall demon-
strate that all critical component failovers have service impact of less than  
 MaximumAcceptableServiceDisruption.   
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  6.      Testing of the [traditional system  |  virtualized application] shall demonstrate 
that at least  < 95% >  of likely hardware and software failures are detected and 
recovered in less than MaximumAcceptableServiceDisruption seconds.   

  7.      Testing of the [traditional system  |  virtualized application] shall demonstrate 
that execution of automatic switchover mechanisms are at least  < 99% >  
successful.     

 Multitenant applications add the following general requirement:

   8.      No failure of one tenant ’ s application instance shall impact service offered by 
any other tenants ’  application service.      

   12.3.2    Service Reliability and Latency Requirements 

 While none of the virtualized application usage scenarios introduced in Section  10.1  
will fundamentally impact service reliability, server consolidation and other usage 
models are likely to impact service latency because of resource sharing (discussed in 
Section  7.1.2 ,  “ Slashdot Effect ” ). The magnitude of the service latency impact will vary 
based on architecture and confi guration of the virtualized platform, as well as opera-
tional factors, possibly including the workload of other applications that are consoli-
dated onto the shared hardware platform. Thus, one should quantitatively characterize 
service latency expectations and carefully measure actual system performance to assure 
that service latency and service reliability are acceptable when the system operates at 
engineered load for a particular confi guration. 

 Table  12.1  gives an example of service latency and reliability requirements for a 
sample application. Two service latency requirement points are specifi ed for each 
transaction type (maximum 50th and 95th percentile latencies) which defi ne a service 
latency envelope, as well as a maximum acceptable service latency and an overall 
service reliability requirement, expressed in defects per million (DPM) transac-
tions when system confi guration is running at or below engineered load. While the 
maximum acceptable service latency and maximum number of DPM operations (service 
reliability) requirements are likely to be the same for both traditional and virtualized 

  TABLE 12.1.    Sample Service Latency and Reliability Requirements at  MP  2 

   Transaction 
Type  

   Maximum 50th 
Percentile 
Latency 

(Milliseconds)  

   Maximum 95th 
Percentile Latency 

(Milliseconds)  

   Maximum 
Acceptable 

Service Latency 
(Milliseconds)  

   Maximum Number 
of Defects per 

Million Operations 
(DPM)  

  Logon    500    1,000    10,000    10  
  Query    150    300    3,000    5  
  Update    250    500    5,000    10  
  Logoff    200    400    4,000    5  
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deployments, the maximum 50th and 95th percentile service latency requirements may 
be less aggressive (i.e., longer) for virtualized deployment than for traditional systems 
to permit the system to be deployed in server consolidation, multitenant, or cloud 
computing confi gurations without violating the service reliability requirements.   

 Formal service reliability and service latency requirements at MP 2 can include:

   1.      The maximum acceptable service latency for virtualized application deployment 
shall be the same as for traditional system deployment (and is shown in Table 
 12.1 ).   

  2.      The virtualized application shall continuously meet all service reliability and 
service latency requirements (of Table  12.1 ) when offered load is less than or 
equal to the engineered capacity of the system under test.     

 Engineered capacity of traditional systems was usually fairly straightforward to specify 
as it was either:

    •       explicitly specifi ed based on well - known hardware confi gurations , for example, 
server confi guration  “ A ”  with  “ B ”  CPU cores, and  “ C ”  Gb of RAM can support 
 “ D ”  simultaneous users); or  

   •       based on an observed characteristic , for example, maximum engineered capacity 
is reached when CPU occupancy reaches  X %, or when memory usage reaches  Y %.    

 As virtualization weakens the application ’ s linkage to the physical hardware, it is 
important to explicitly specify the observed behaviors that signify that engineered 
capacity has been reached for the particular application confi guration. Many critical 
applications will include multiple VM instances — each of which may have different 
operational characteristics, including indications that engineered capacity has been 
reached for each instance — so it may be diffi cult to offer a single one - size - fi ts - all 
requirement specifying engineering capacity of virtualized application confi gurations. 
Thus, the authors offer the following higher level requirements:

   3.      The performance indicator(s) that indicate that a virtualized application 
instance has reached engineered capacity shall be specifi ed . These indicators 
will typically include CPU usage, depth of work queue, and so on. Note that 
different VM packages (e.g., VMware) provide additional metrics that may be 
useful to assess resource usage.  

  4.      Service reliability and latency testing will be executed on a virtualized applica-
tion instance running near or at engineered capacity.      

   12.3.3    Overload Requirements 

 By decoupling application and platform software from the underlying hardware 
resources, virtualization complicates hardware dimensioning and capacity planning 
because engineered capacity is determined by the virtual confi guration rather than 
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explicitly via specifi ed physical hardware. This reinforces the need to complete robust 
overload testing to assure that when offered load exceeds the engineered virtual resource 
capacity, the application will automatically detect the overload, gracefully control the 
overload, and resume normal operation promptly after the overload condition clears. 
Assuming that the overall application deployment includes appropriate perimeter secu-
rity elements like fi rewalls, deep packet inspection elements, and so on, DoS/DDoS 
attacks should be largely controlled by that network infrastructure; however, it may 
also be appropriate to rate limit the bandwidth of either virtual network adapters 
or networking infrastructure to further control potential DoS/DDoS attacks on the 
application. 

 The following overload requirements are generally appropriate:

   1.      The [traditional system  |  virtualized application] shall have a mechanism for 
detecting and automatically mitigating overload conditions . This mechanism 
shall be based on characteristics such as resource availability (e.g., CPU, 
memory, and buffers), message priority (e.g., continuing to service emergency 
calls), disk read and write latency, and transaction  “ stickiness ”  (i.e., directing 
all messages or actions associated with a particular transaction to the same 
component for processing). Note that the guest OS ’ s view of resource usage 
may be different from that of the host OS so care should be taken to ensure the 
correct metrics are used.  

  2.      The [traditional system  |  virtualized application] shall endure at least two con-
tinuous hours of  < 4 >  times the nominal engineering capacity of the confi gured 
system without critical failure . Note that many, and perhaps all, user requests 
will fail during this period, and service reliability requirements do not apply 
during overload situations.  

  3.      The [traditional system  |  virtualized application] shall revert to normal opera-
tion and meet service reliability and service latency requirements within  < 5 >  
minutes of overload situation clearing.   

  4.      The [traditional system  |  virtualized application] shall raise an alarm when 
overload controls are activated and clear the alarm when overload controls are 
deactivated.     

 As discussed in the server consolidation usage scenario (Section  12.2.2 ), hypervisors 
may occasionally offer VM instances a burst of additional resources when needed, and 
thus overload controls may not need to activate if the platform delivers a suffi cient and 
timely burst of additional resources to meet the offered load. Likewise, the virtualized 
platform may be unable to deliver the nominally allocated or requested resource capac-
ity (e.g., because of oversubscription), and thus overload controls may be required to 
activate at less than nominal workload levels. The risk that the hypervisor may deliver 
less capacity than requested leads to the following requirement:

   5.     Overload controls will activate and deactivate to assure minimum user service 
impact when the hypervisor provides fewer resources (e.g., CPU or network 
bandwidth) than were requested or reserved and cannot meet the offered load.     
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   12.3.4    Online Capacity Growth and Degrowth 

 The rapid elasticity that is an essential characteristic of cloud computing is underpinned 
by the fundamental ability of an application to grow and shrink capacity while the 
application remains online and serving users. This fundamental online application 
growth and degrowth feature transforms into rapid elasticity when service orchestration 
mechanisms coordinate and automate execution of the online application growth and 
degrowth mechanisms to enable rapid — and perhaps even automated — capacity growth 
and degrowth to closely track offered load. 

 As discussed in Section  7.4 ,  “ Cloud and Capacity, ”  there are three fundamental 
application growth strategies: horizontal growth, vertical growth, and out growth. While 
not all applications will support all three growth strategies, applications should support 
vertical or horizontal growth (or both) to permit a single application instance to grow, 
as well as outgrowth in which additional application instances are created (possibly 
even on multiple infrastructure as a service (IaaS) providers ’  platforms simultaneously 
in a cloud bursting scenario). 

 Applications should consider the following requirements:

   1.      It shall be possible to increase application capacity without impacting service 
to existing application users.   

  2.      Mechanisms shall be provided to gracefully release excess resources without 
causing unacceptable user service impact . Note that this is often implemented 
by migrating user sessions or workload away from lightly loaded process or 
VM instances so that (then unused) processes or VM instances can be termi-
nated and their resources released.    

 The following requirements enable application providers and IaaS providers to compare 
and agree upon capacity growth expectations.

   3.      The IaaS provider must indicate the speed at which additional capacity could 
be brought online.   

  4.      Application providers must specify the speed at which additional capacity is 
required.      

   12.3.5    (Virtualization) Live Migration Requirements 

 Proper support of live migration affords the cloud service provider signifi cant opera-
tional fl exibility for application management. For example, live migration enables 
sophisticated cloud service providers to migrate running applications (i.e., their memory 
and execution state and disk storage access), onto a subset of servers during off peak 
periods and power down the unneeded servers to save electricity and cooling expense. 
As load increases approaching the next busy period, more servers can be powered on 
and the workload can be rebalanced over the expanded server pool via live migration. 
Thus, cost -  and/or energy - conscious cloud providers might live migrate many applica-
tion instances twice a day or more. 
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 Live migration inherently entails a brief window of service disruption when the 
VM is paused and not executing as the VM instance memory is transmitted from one 
host to another and has to resynch its state information with the new copy. This period 
of disruption should be shorter than the maximum acceptable service disruption time 
so live migration should not cause transactions pending during the live migration event 
to be delayed so much as to make the responses unacceptably late and thus impact 
service reliability metrics. Note that since slow live migration might be mistaken by 
an application ’ s high availability mechanism as a critical application failure, it may be 
appropriate to implement some interlock between live migration and an application ’ s 
high availability mechanism to prevent spurious application failovers. If this is neces-
sary, then additional requirements will be applicable to the application ’ s high avail-
ability infrastructure. 

 Virtualized applications should support the following requirements:

   1.      In no cases will live migration cause application ’ s high availability mechanism 
to delay successful heartbeat/keepalive or other responses/protocol exchanges 
by more than <X> milliseconds.   

  2.      In no cases will live migration cause the maximum acceptable service latency 
(from Table  12.1 ) or maximum DPM rate (also from Table  12.1 ) to be exceeded.   

  3.      During the live migration event, the 50th and 95th percentile of service latency 
will be no more than <X> milliseconds more than the normal service latency 
requirement (from Table  12.1 ).   

  4.      Live migration shall cause no nonvolatile data — including performance counts, 
provisioning data, or usage/billing information — to be lost.     

 Multitenant applications have the following requirement:

   5.      No live migration executed on one application instance shall have any user 
service impact on any other (multitenant) application instances that might be 
running.     

 Compliance with these requirements must be robustly tested and validated as they are 
key indicators of the availability and reliability of the application.  

   12.3.6    System Transition Activity Requirements 

 Enterprises will expect any user service disruption due to service transition activities 
like software upgrade, update, or retrofi t to be no greater than for traditional application 
deployment. Enterprises may even expect virtualized applications to have less service 
impact for service transition activities because live migration or geographic distribution 
(or georedundancy) of application instances can be used to minimize service disruption 
of service transition activities. Any increase in the expectation should be clearly cap-
tured in requirements to assure that architects and developers are aligned, and so testers 
can methodically verify achievement of higher expectations.
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   1.      Software upgrade, update, retrofi t, and patching of [traditional system  |  virtual-
ized application] shall have less than  < X >  seconds of impact on existing users 
with no loss of state or context, and no more than  < Y >  seconds of impact on 
new user sessions.     

 A similar requirement should be captured to include service transition activi-
ties involving the infrastructure (e.g., hardware, fi rmware, operating system, and 
hypervisor):

   2.      Upgrade, update, retrofi t, and patching of [traditional system  |  virtualized 
system, including hardware, fi rmware, operating system, and hypervisor] shall 
have less than  < X >  seconds of impact on existing users with no loss of state or 
context, and no more than  < Y >  seconds of impact on new user sessions.     

 Multitenant applications have the following requirement:

   3.      No service transition activity executed on one tenant ’ s application instance shall 
have any user service impact on any other tenants ’  application instances that 
might be running.     

 Inevitably, the IaaS provider will occasionally execute planned or preventive mainte-
nance on the underlying physical hardware, and the IaaS provider should take steps to 
minimize any application service impact due to the provider ’ s actions. While applica-
tion support of live VM migration is the fi rst step in minimizing the impact of IaaS 
service transition downtime, individual IaaS providers may offer additional require-
ments to minimize the risk of service quality, reliability, or availability impact due to 
IaaS provider operations.  

   12.3.7    Georedundancy and Service Continuity Requirements 

  [Bauer11]  offers a complete set of system georedundancy requirements to consider, so 
this section reviews only the highest level requirements which should be relevant for 
both traditional as well as virtualized applications.

   1.      [Traditional system  |  virtualized application] shall support georedundant 
deployment.   

  2.      The  recovery time objective  ( RTO ) for restoring user service to a redundant 
system confi guration shall be no more than  < X >  hours/minutes.   

  3.      The RTO for restoring administrative, maintenance, and provisioning service 
to a redundant system confi guration shall be no more than  < Y >  hours/minutes.   

  4.      The  recovery point objective  ( RPO ) shall be no more than  < Z >  hours/minutes/
seconds.       
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   12.4    QUALITATIVE RELIABILITY ANALYSIS 

 Having completed the high availability architecture for the virtualized system, one next 
completes qualitative reliability analysis to assure that it is feasible and likely that 
qualitative reliability requirements will be met. If the native high availability mecha-
nism still meets the reliability requirements for the virtualized application, then that 
mechanism should continue to be used particularly when fi rst virtualizing an application 
that existed on a traditional architecture. Guidelines for mapping application instances 
onto servers to support high availability are discussed in Section  11.1.1 ,  “ Mapping 
Software into Virtual Machines. ”  

 As the architecture becomes more virtualization aware, it may become benefi cial 
to leverage at least some of the high availability mechanisms offered by the virtualiza-
tion platform, such as automatically restarting failed VM instances; however, the risk 
due to the added complexity and possible race conditions between the two high avail-
ability mechanisms must be well analyzed and tested before that is considered. In 
addition, the use of the high availability mechanisms associated with a particular vir-
tualization platform may also lock the application into that particular virtualization 
platform, thereby reducing deployment fl exibility. Several general architectural ques-
tions to consider are:

    •      Does the native high availability mechanism still meet the reliability require-
ments for the virtualized application?  

   •      Would the virtualization platform ’ s high availability mechanism meet the reli-
ability requirements for the virtualized application?  

   •      Would the use of a particular virtualization high availability mechanism constrain 
the application to that particular hypervisor or virtualization platform?  

   •      What is the impact of simultaneous use of both native and virtualized high avail-
ability mechanism? Is there a risk of race conditions?    

 In addition, the following reliability analyses should be completed:

    •      Verify virtualized hardware is not a single point of failure — Section  12.4.1   

   •      Verify that results of FMEA of virtualized system are comparable to native 
system results — Section  12.4.2   

   •      Verify that live migration should have a negligible service impact — Section 
 11.3.3   

   •      Verify that elastic growth and degrowth should have negligible service impact —
 Section  12.4.3   

   •      If applicable, verify that confi guration and management of individual tenant 
application instances has no impact on other tenant instances — Section  12.4.3.1     

   12.4.1     SPOF  Analysis for Virtualized Applications 

 Unlike traditional systems, virtualized applications are explicitly decoupled from 
the underlying hardware, so hardware platform components are often not explicitly 
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shown in architectural diagrams. Nevertheless, application suppliers should recommend 
at least one high availability confi guration for critical applications that maps application 
and platform software components onto virtualized machines confi gured on different 
hardware platforms to assure that no single point of failure exists. This means assuring 
that redundant VM instances are not hosted by a single element (e.g., all active and 
redundant VMs running on a single server) so that no single hardware or infrastructure 
failure will impact both primary and redundant VM instances of application compo-
nents. Clear confi guration information should be provided to architects and operations 
engineers on the engineering rules to assure that the application is deployed in a suit-
ably high availability confi guration so that no single (noncatastrophic) hardware, soft-
ware, or other failure produces an unacceptable service impact. Server anti affi nity 
policy should be set to assure that specifi c VMs must not be active on the same server. 

 Figure  12.2  illustrates a fault tolerant architecture that has mapped the various 
redundant component instances of a sample application (A 1  and A 2 ; B 1 , B 2 , B 3 , and B 4 ; 
C 1  and C 2 ) across four physical servers hosting VMs (virtual servers 1, 2, 3, and 4). 
Figure  12.3  shows how a failure that impacts server 1 — and hence A 1 , B 1 , and C 1  —
 leaves redundant VM instances — A 2 , B 2 , B 3 , B 4 , and C 2  — available to serve users, and 
thus server 1 (or servers 2, 3 and 4) is not a single point of failure. Readers can imagine 
how individual failures of virtualized servers 2, 3, or 4 would not be single points of 
failure either. Note that in the case of load - shared  N     +     K  redundancy there does not 
have to be a one - to - one mapping of VM to server as indicated in Figure  12.2 ; however, 

     Figure 12.2.     Mapping Virtual Machines across Hypervisors.  
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     Figure 12.3.     A Virtualized Server Failure Scenario.  
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there does have to be a distribution of VMs that supports the availability of redundant 
VM instances in the event of a total server failure.    

   12.4.2    Failure Mode Effects Analysis for Virtualized Applications 

  Failure mode effects analysis  ( FMEA ; described in Section  5.1.3 ) for traditional appli-
cations generally analyzes down to the level of recoverable software and hardware 
modules. Virtualization adds two additional levels of complexity to consider:

    •      Failure and recovery of every VM instance should be considered separately.  

   •      Failure analysis of traditional hardware modules (e.g., compute blades, rack 
mounted servers, hard disk drives, and network adapters) must be replaced with 
analysis of virtualized platform components (e.g., virtual CPU, virtual NIC) 
including the hypervisor.    

 Depending on the application ’ s virtualization architecture, a single virtualized server 
failure may impact a greater portion of application functionality than a hardware failure 
of a traditional application confi guration, and thus one must assure that the failure 
scenario will not produce user impact of longer than the application ’ s maximum accept-
able service disruption time.  

   12.4.3    Capacity Growth and Degrowth Analysis 

 Application growth and degrowth are facilitated by rapid elasticity mechanisms. In 
traditional systems, it is often important that application and resource growth are non-
service impacting; growth and degrowth are treated as manual service transition activi-
ties. The virtualization and cloud mechanisms support traditional nonservice impacting 
growth and degrowth as well, but what differentiates cloud rapid elasticity mechanisms 
from traditional ones is that the mechanisms are automatic and usually do not require 
the physical installation or removal of hardware. They can also mitigate some overload 
situations by carefully monitoring traffi c loads and growing available capacity before 
the offered load reaches the engineered capacity of the allocated resources. Section  7.4 , 
 “ Cloud and Capacity, ”  provides background on how the cloud mechanisms impact 
capacity. Section  11.1.5 ,  “ Rapid Elasticity, ”  discusses how to maximize effective usage 
of the mechanisms to ensure reliable growth and degrowth. Similar to the live migration 
process above, growth and degrowth scenarios must be analyzed and verifi ed through 
testing to ensure that they can meet the requirements defi ned in Section  12.3.4 ,  “ Online 
Capacity Growth and Degrowth. ”  Scenarios to consider include:

    •      Growth of Application Capacity .      This should be verifi ed through a manual 
request for an additional instance of the application, as well as through an auto-
matic trigger (as indicated through service orchestration — see Section  8.3.1 , 
 “ Role of Rapid Elasticity in Cloud Management ” ).  

   •      Degrowth of Application Capacity .      This should be verifi ed through a manual 
request for removal of an instance of the application as well as through an 
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automatic trigger (as indicated through service orchestration — see Section  8.3.1 , 
 “ Role of Rapid Elasticity in Cloud Management ” ).  

   •      Growth of Persistent (Nonvolatile) Storage .      This should be verifi ed through a 
manual request for more storage, as well as through an automatic trigger (as 
indicated through service orchestration — see Section  8.3.1 ,  “ Role of Rapid Elas-
ticity in Cloud Management ” ).  

   •      Degrowth of Persistent (Nonvolatile) Storage .      This should be verifi ed through 
a manual request for removal of storage as well as through an automatic trigger 
(as indicated through service orchestration — see Section  8.3.1 ,  “ Role of Rapid 
Elasticity in Cloud Management ” ).  

   •      Overload Conditions .      Applications must be designed and validated for overload 
control management. This can be tested by applying varying loads on a system 
to simulate overload conditions followed by low traffi c conditions to ensure that 
rapid elasticity can provide the needed growth and degrowth and mitigate the 
impact of overload (as defi ned in the requirements in Section  12.3.3 ,  “ Overload 
Requirements ” ).    

 The same scenarios should be run in a multitenant confi guration to ensure that none of 
the growth or degrowth activities negatively impacts another tenant ’ s service. 

   12.4.3.1    Multitenancy Considerations.     If the application supports multitenancy, 
then the service transition activity analysis should also verify that no service transition 
activity impacts active application instances that are not the explicit target of the activ-
ity. In addition to traditional service transition activities, the multitenancy analysis 
should also verify that there is no service impact on other tenant instances when each 
and every tenant - specifi c confi guration parameter is changed.    

   12.5    QUANTITATIVE RELIABILITY BUDGETING AND MODELING 

 To assure that quantitative service availability requirements are met, the best practice 
is to create a downtime budget that meets the requirements and construct mathematical 
availability modeling demonstrating the feasibility of achieving the budget. The fol-
lowing sections will discuss availability analysis. Quantitative service reliability (i.e., 
DPM) and latency budgeting and modeling are beyond the scope of this book. 

   12.5.1    Availability (Downtime) Modeling 

 As discussed in Section  10.3 , the best practice is to construct architecture - based avail-
ability modeling to analyze the feasibility and likelihood of a system achieving its 
quantitative service availability expectations. Fine - grained availability modeling will 
typically consider each component, module, or subsystem included in the FMEA analy-
sis that can impact the primary service being modeled; medium -  or coarse - grained 
modeling will aggregate some of the individual components, modules or subsystems 
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to simplify the mathematics as well as parameter estimation and ultimate model valida-
tion and calibration; coarse - grained modeling considers very simple architectural or 
 “ black box ”  view of the system. 

 While virtualized application suppliers may not supply specifi c hardware to 
customers, the application supplier should have one or more reference hardware con-
fi gurations. It is generally appropriate to use the reference high availability hardware 
confi guration when modeling system availability. This enables the application supplier 
to offer customers a reference system availability prediction, and one can logically 
delete the reference hardware from the model by setting all hardware failure rates to 0 
(e.g., 0 FITs, which is 0 failures per billion hours). One can then construct a math-
ematical model of their specifi c virtualized platform, estimate the service availability 
of that platform, and then sum that downtime with the hardware - free (i.e., hardware 
failure rates equal 0 failures per hour) system availability prediction to estimate overall 
unplanned software downtime for the deployed virtualized application.  

   12.5.2    Converging Downtime Budgets and Targets 

 Inevitably, several iterations are necessary to refi ne downtime modeling input param-
eters to reach feasible inputs that result in acceptable predicted values. Refi nement to 
the budget — and even system architecture — might be necessary for reasonable model-
ing input parameters to make achieving the overall service availability requirement 
feasible and likely. Having reached a set of input parameters that achieve the require-
ment, the quantitative values should be used as baseline targets for failure rates, failure 
coverage factors, switchover/failover latencies, and switchover/failover success prob-
abilities. These targets should be considered by architects and developers to guide their 
designs, and should be verifi ed by unit and system testing.  

   12.5.3    Managing Maintenance Budget Allocation 

 Downtime budget must also account for downtime incurred while performing main-
tenance activities. As has been discussed in Section  11.3 ,  “ IT Service Management 
Considerations, ”  it may be feasible for these activities to be performed reliably with 
no service downtime. Architects and developers should take maximum advantage of 
live migration, elasticity, and service orchestration mechanisms and incorporate them 
in their system architecture and designs to ensure that successful execution of the 
maintenance activities does not accrue any service downtime. Robust unit and system 
testing must be performed to validate that user service is not affected by maintenance 
activities. If successful execution of the maintenance activities accrues no service 
downtime and the activities are well tested and validated, then budget allocated in this 
category can be minimal (e.g., 1 minute or less) to account for a rare product - attributable 
failure in the mechanisms or procedures.   

   12.6    ROBUSTNESS TESTING 

 Robustness testing confronts a system with plausible failure scenarios to verify that 
the failure is properly contained, automatically detected, and rapidly recovered without 
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causing unacceptable service impact to system users. Robustness tests of critical sys-
tems with high availability expectations should be completed to assure that inevi-
table failures will be successfully and automatically mitigated by the deployed system. 
Robustness testing is considered in the context of each of the 8 product - attributable 
failure vectors reviewed in Section  4.4 ,  “ Risks of Service Models ”  (and  [Bauer10] ). 

 Virtualization technology should reliably emulate application operation on 
traditional/native hardware confi gurations, and thus most or all basic robustness testing 
executed on traditional/native hardware confi gurations is expected to work properly on 
virtualized confi gurations. For applications that are offered on both native and virtual-
ized confi gurations, some robustness testing can be performed on one of those confi gu-
rations on the assumption that behavior will be identical on the other confi guration; 
other scenarios are suffi ciently different that at least some robustness test cases should 
be executed on both confi gurations. Note that in many cases, applications are built on 
previously tested platform software, so the bulk of robustness testing may have been 
covered during platform software testing. Nevertheless, some robustness testing is 
appropriate to verify that application software is properly integrated with high avail-
ability mechanisms in platform software and that the application and platform ’ s high 
availability mechanisms are properly integrated with the hypervisor. 

   12.6.1    Baseline Robustness Testing 

 Mapping a traditional application onto a virtualized platform means that integration of 
automatic failure detection and recovery must be reverifi ed, at least to the VM instance 
and virtualized server level. In addition to verifying proper failure containment and 
reliable recovery, all failure detection and latencies and switchover/failover time mea-
surements should be repeated so validated latency inputs can be used as inputs to service 
availability modeling. Some spot checking of programming error, data error, redun-
dancy, application protocol, and network error robustness testing should be repeated 
against the virtualized application to assure high - quality integration/adaptation of the 
application ’ s high availability infrastructure with the virtualized environment. 

 Server consolidation, multitenant, and cloud computing usage scenarios add the 
additional risk that failure or abnormal behavior of a coresident application may impact 
the target application. Since consolidated applications inherently share the same physi-
cal processing, networking, and other physical resources, a heavy workload on a con-
solidated application might affect resources available to the target application. While 
the virtualization platform should prevent a heavy workload by a consolidated applica-
tion from impacting actual resource availability (i.e., resource allocation requests 
should not explicitly fail), a heavy workload may increase resource access latency for 
other applications. For example, if a consolidated application is enduring a heavy 
workload or otherwise under stress (e.g., a security attack), then the target application 
may not enjoy the same favorable CPU scheduling as when consolidated applications 
are lightly loaded, and less favorable CPU scheduling may translate directly into some-
what increased transactional latency. These risks are sometimes euphemistically referred 
to as  “ noisy neighbor ”  problems because just as a noisy neighbor in an apartment build-
ing can impact your ability to sleep, a busy or errant application on a shared IaaS 
platform can impact the target application. We will lump all server consolidation 
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related robustness scenarios into a new robustness vector called  “ Neighbor ”  detailed 
in Section  12.6.1.1 . In addition, virtualization introduces several new failure scenarios, 
including:

    •      Failures of virtualized hardware, discussed in Section  12.6.1.2 .  

   •      Failures related to virtualized redundancy, discussed in Section  12.6.1.3 .  

   •      Failures related to virtualized activities, discussed in Section  12.6.1.4 .    

   12.6.1.1    Neighbor Failures.     Consolidated applications —  “ neighbors ”  on a shared 
virtualized platform — share access to essentially the same virtualized resources as the 
target application. For example, if the workload on neighboring applications increases, 
then resource - sharing algorithms (e.g., CPU scheduling) implemented by the hypervi-
sor may either make less CPU resources available to the target application or may 
increase the latency between time windows when the target application is executed on 
a physical CPU or otherwise alter the resource access that the target application enjoyed 
when the neighbors were making light resource demands on the shared virtualized 
platform. Likewise, if the failure or errant behavior of a neighboring application is not 
fully contained by the hypervisor, then that failure or errant behavior might cascade to 
other VM instances, including the target application. Neighbor failures to consider in 
robustness test planning include:

    •      CPU Exhaustion by Neighboring Application(s) .      What happens to the target 
application when one or more coresident VM instances go to 100% CPU utiliza-
tion, due to software defects (e.g., infi nite loops and ineffective overload control), 
spikes in legitimate traffi c, security attack, and so on?  

   •      Delay in Real - Time Notifi cation .      activation of clock or timer handlers is delayed 
to simulate target application ’ s handler being queued behind one or more other 
application ’ s interrupt handlers. Thus, the target application ’ s handler might 
fi nally execute signifi cantly later than was nominally requested.  

   •      Network  “ Receive ”  Saturation by Neighboring Application(s) .      What happens 
when a coresident VM instance is experiencing a traffi c fl ood or DDoS attack? 
Is the target application ’ s IP traffi c impacted?  

   •      Network  “ Send ”  Saturation by Neighboring Application(s) .      what happens when 
a coresident VM sends massive volumes of network traffi c for a window of time 
(e.g., replicates a massive data set to another application instance)?  

   •      Disk Read Saturation by Neighboring Application(s) .      What happens when a 
coresident VM(s) needs to read massive data sets from disk?  

   •      Disk Write Saturation by Neighboring Application(s) .      What happens when 
coresident VM(s) attempt to write massive data sets to disk?  

   •      Memory Exhaustion by Neighboring Application(s) .      What happens when coresi-
dent VM instances simultaneously reach their heap memory allocation?  

   •      Attack by a Neighbor Inducing Any or All of the Above as Well as an Internal 
Network Saturation .      What happens when one neighbor maliciously attacks 
another?    
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 Applications that support multiple independent instances executing simultaneously on 
the same virtualized platform should verify that both unplanned failures and successful 
and unsuccessful service transition activities do not adversely impact service offered 
by other applications instances.  

   12.6.1.2    Failures of Virtualized Hardware.     By decoupling application and plat-
form software from the underlying hardware resources, virtualization introduces a risk 
that hardware failure and status information (e.g., resource load/overload) may not fl ow 
properly in virtualized confi guration compared with native deployments. As discussed 
in Chapter  6 ,  “ Hardware Reliability, Virtualization and Service Availability, ”  virtualiza-
tion merely decouples applications from fallible hardware rather than completely elimi-
nating the risk of hardware failure. Thus, robustness testing of applications is necessary 
to assure that the virtualized platform, application platform, and application software 
will seamlessly interact to assure that inevitable hardware failures are detected, con-
tained, and service is recovered in less than the MaximumAcceptableServiceDisruption 
time. Assuring effective containment and rapid automatic detection and recovery from 
hardware failures is primarily the responsibility of the virtualized platform supplier or 
IaaS provider. 

 It is obviously infeasible to verify proper detection and recovery from all pos-
sible failures of all potential hardware platform confi gurations. Thus, one should 
verify proper rapid and automatic failure detection and recovery from the types of 
hardware failures that are most likely to occur. The types of hardware failures to con-
sider include:

    •      Processor Failure .      Complex and highly integrated devices like microprocessors, 
digital signal processors, network processors, fi eld programmable gate arrays, 
and so on are critical to fi eld replaceable unit (FRU) functionality and are often 
more susceptible to wear out due to environmental - related effects.  

   •      Disk Failure .      Hard disk drives are built around high performance spinning plat-
ters and moving magnetic heads. Over time, moving parts (e.g., lubricated bear-
ings) will wear and eventually fail. Note that IaaS infrastructure, especially 
redundant array of inexpensive (or independent) disks confi gurations, may be 
designed to automatically mitigate the risk of most disk failures.  

   •      Power Converter Failure .      Board - mounted power modules are used to convert 
voltages provided on the system ’ s backplane to the voltages required by devices 
on the board itself.  

   •      Clock Failure .      Oscillators drive the clocks that are the heartbeat of digital 
systems.  

   •      Clock Jitter .      In addition to hard (persistent) clock failures, the clock signal pro-
duced by an oscillator can jitter or drift. Clocks can drift as they age for a variety 
of reasons including mechanical changes to crystal connections or movement of 
debris onto crystal. This jitter or drift can cause circuitry served by one oscillator 
to lose synchronization with circuitry served by another oscillator, thus causing 
timing or communications problems between circuits.  
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   •      Switching/Ethernet Failure .      These devices enable IP traffi c to enter and leave 
the FRU, and thus are critical.  

   •      Memory Device Failure .      Memory devices are typically built with the smallest 
supported manufacturing line geometries to achieve the highest storage 
densities.  

   •      Parallel or Serial Bus Failure .      High - speed parallel and serial busses are very 
sensitive to electrical factors like capacitance and vulnerable to crosstalk. Many 
connector failures can be covered via this error category.  

   •      Transient Failure or Signal Integrity Issue .      Weak electrical design or circuit 
layout can lead to stray transient signals, crosstalk, and other impairments of 
electrical signals.  

   •      Application - Specifi c Component Failure .      Application - specifi c components like 
optical or radio frequency devices may be more failure prone because of small 
device geometries, high power densities, and newness of technology or manu-
facturing process. Components like fans, aluminum electrolytic capacitors, and 
batteries are also subject to wear out.    

  Hardware fault insertion    ( HFI ) testing is the best practice for verifying automatic 
recovery from hardware failures. Virtualization enables one to execute the HFI tests 
on whatever hardware platform supports HFI, regardless of whether the deployment/
production hardware supports HFI testing because virtualization in general and the 
hypervisor in particular should assure that classes of hardware failures should be pre-
sented to applications via VMs in similar ways. Note that different virtualized hardware 
drivers may cause some hardware failures to be presented to the VM instances hosting 
applications differently.  

   12.6.1.3    Virtualization and Redundancy Failures.     Virtualization creates the 
risk that unneeded VM instances will be spuriously spawned or incorrectly remain 
active or paused, thereby causing application software — especially high availability 
software — to malfunction. In addition, live migration, online capacity growth, and 
online capacity degrowth are complex operations that can fail. Specifi c failure scenarios 
to consider:

    •      Spurious/unexpected application VM instance (e.g., a snapshot) is activated.  

   •      Application VM instance spawns very slowly.  

   •      Stale (paused) application VM instance activated.  

   •      Live migration fails to successfully restart a VM instance.  

   •      Live migration slowly restarts a VM instance (e.g., <X> seconds of paused or 
 “ lost ”  time).  

   •      Request to allocate and activate a new VM instance fails.  

   •      Request to allocate more persistent (nonvolatile) storage fails.  

   •      Request to destroy a VM instance fails to complete successfully.     
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   12.6.1.4    Network Errors.     Presumably, errors in virtualized network interfaces 
would be rendered to VM instances either as  “ normal ”  NIC errors, or the network 
packet/data would simply never be presented to the VM instance. Since IP networking 
expects IP packets to occasionally be lost, protocol and application mechanisms miti-
gate occasional lost packets. Thus, failures of virtualized network adapters should not 
be materially different from failures presented by traditional NICs on native hardware 
confi gurations, yet it may be appropriate to repeat some testing to verify proper opera-
tion of network error mitigation mechanisms.  

   12.6.1.5    Summary.     Figure  12.4  gives an Ishikawa, or  “ fi shbone, ”  diagram for 
high - level robustness test cases for virtualized applications that augments  “ Figure 
 4.8  — Software Supplier (and SaaS) Responsibilities for Traditional Error Vectors, ”  with 
the robustness test cases discussed earlier in this section.     

   12.6.2    Advanced Topic: Can Virtualization Enable Better 
Robustness Testing? 

 Beyond the obvious benefi t of potentially shortening execution time of robustness test 
cases by restarting snapshot VM images rather than requiring testers to wait while 
slower traditional application startup completes, virtualization technology can offer 
opportunities for better, cheaper or more effective execution of some robustness test 
cases. As an analogy, consider that the boundary scan technology (IEEE 1149.1, some-
times referred to as JTAG for the Joint Test Action Group that developed the standard), 

     Figure 12.4.     Robustness Testing Vectors for Virtualized Applications.  
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which is primarily used for manufacturing and assembly testing of electronic compo-
nents and assemblies can also be used to simulate hardware failures. 1  Robustness test 
cases that are better, cheaper, or faster to execute on virtualized confi gurations than 
on native confi gurations can potentially save application development teams ’  time and 
money by executing those robustness test cases on a virtualized confi guration instead 
of the native confi guration when appropriate. Below is a list of ways that virtualization 
might be leveraged to enable better, cheaper, or faster robustness test case execution.

    •      Suspending application VM instances is an effective way to simulate profound 
unavailability of a target network element because it makes the entire element 
completely nonresponsive (e.g., even PINGs to the VM fail).  

   •      Virtual network interface cards could theoretically simulate a variety of network 
impairments, such as dropped and corrupted IP packets, packets delivered out of 
sequence, and packet jitter.  

   •      Virtualization can be used to create dummy or simulated systems (often on less 
powerful hardware, such as older servers or even laptops) which can be used for 
training and perhaps even to practice operations, administration, maintenance, 
and provisioning (OAM & P) procedures before executing procedures on live 
systems. Training via realistic simulation is a best practice for minimizing the 
risk of human error during  “ live ”  execution of operational and maintenance 
procedures. Appropriate virtualized environments with suitable training materials 
and scenarios can reduce the risk of human/procedural errors and associated 
service downtime.    

 One could even construct a virtualized platform that has fault insertion enabled so that 
one could easily simulate hardware, networking, and perhaps other failure scenarios to 
verify robustness of virtualized applications. Presumably, such a fault insertion enabled 
virtualized platform could be used for robustness testing of literally any application 
that can be hosted on the platform. 

 Cycle time for robustness test case execution might also be reduced by restoring 
system snapshots taken before executing failure scenarios because restoring a system 
snapshot should be faster and potentially more automated than completing traditional 
system restoration activities between of each robustness test iteration. Reducing cycle 
time means that either more robustness test cases can be completed in the same interval 
(producing a more robust product for the same testing investment), or a fi xed number 

  1      JTAG enables  “ tests ”  to be externally applied to hardware under test via a fi ve - wire JTAG connection, such 
as driving a boundary scan - enabled component into  “ HIGHZ ”  (high electrical impedance) state, which 
electrically isolates (i.e., disconnects) the component from circuits on a printed wiring board, thus simulating 
a profound component failure. A variety of other JTAG commands and mechanisms can be used to simulate 
a variety of hardware failures on unmodifi ed hardware and execute completely independently of normal 
software and fi rmware executing on the hardware assembly. 
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of robustness test cases can be completed in a shorter interval (producing similar robust-
ness with smaller testing investment).   

   12.7    STABILITY TESTING 

     Assuming an appropriate stability testing campaign has been successfully com-
pleted against the traditional application confi guration, stability testing of the vir-
tualized application confi guration can focus on the following virtualization - related 
risk areas:

    •      Overload .      Application deployments on virtualized platforms will undoubtedly 
offer somewhat different service capacities and thus applications may experience 
a broader range of overload manifestations in virtualized deployment than in 
traditional deployment. Note that the overload test phase should include both 
light overload periods (e.g., 105% of engineered capacity) in which the hypervi-
sor may boost the resource allocation to cover the increased workload, as well 
as true overload (e.g., 150% of engineered load) to assure that overload controls 
properly activate and later deactivate.  

   •      Live Migration .      Live migration enables data center operations staff to move 
active VM instances from host to host to optimize data center operations. If live 
migration will be used with the virtualized application in fi eld deployment, then 
stability testing should verify that live migration has no impact on system stabil-
ity even when occurring during failure situations.  

   •      Variations in Resource Availability .      In server consolidation, multitenancy, cloud, 
and virtual appliance deployment scenarios, the virtualized platform resources 
might be oversubscribed so the resources actually available to an application 
instance could range from being greater than the nominal resource reservation 
to somewhat less than the reservation. Stability testing should verify stability 
even when actual resource allocation differs from the nominal reservation.  

   •      Growth/Degrowth .      The virtualization platform and the hypervisor in particular 
manage the allocation and deallocation of resources for new and removed VM 
instances. Stability testing should verify that growth/degrowth of VM instances 
has no impact on system stability.    

 Ideally, a stability testing campaign includes a long - duration endurance test (e.g., 72 
hours) which demonstrates complete system stability over an extended period. This 
endurance test should include a diverse and realistic mix of user operations as well as 
operational, administrative, maintenance and provisioning tasks. The load on the system 
under test should vary and include long periods with a system under heavy sustained 
load. One stability testing strategy is for the test campaign to simulate heavy daily 
traffi c patterns with very heavy user traffi c loads during a (possibly extended) busy 
period and a heavy provisioning load running during a maintenance period and/or 
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during the period of busy user service, depending upon expected traffi c patterns of the 
deployed application. 

 When possible, stability testing should mirror heavy usage patterns likely to be 
experienced in production operation. Thus, a stability test run might begin with a heavy 
(e.g., 80% of engineered capacity) mixed and sustained load of user traffi c; a modest 
OAM & P workload, like adding new users and provisioning existing users, should be 
running also, as would be expected in production. After a continuous period of at least 
as long as the longest daily busy period the application is expected to experience in 
production, a simulated maintenance period can begin with maximum administrative 
load, such as bulk provisioning of new and existing users and perhaps database backup, 
with a moderate user workload continuing. The maintenance phase should be somewhat 
longer than the longest plausible maintenance period in production deployment. After 
the maintenance phase completes, a series of live migrations with moderate user and 
OAM & P workloads running can be executed. Periods of light and heavy overload can 
also be included, as can some simulated failure and recovery scenarios. The stability 
test generally ends with a fi nal soak phase with moderate to heavy user and administra-
tive workloads to assure that the system is truly stable after all of the activities and 
loads.  

   12.8    FIELD PERFORMANCE ANALYSIS 

 A key of continuous quality improvement is following the Deming cycle   of plan/do/
check/act to use feedback to close the loop and drive improvements. Figure  12.5  maps 
the system design for reliability activities against plan, do check, and act phases:

     Figure 12.5.     System Design for Reliability as a Deming Cycle.  
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    •       Plan  involves setting reliability requirements and completing qualitative analysis 
and quantitative budgeting and modeling to assure it is feasible for the planned 
architecture and design to meet the requirements.  

   •       Do  is developing the system and validating achievement of the reliability and 
availability requirements via appropriate robustness and stability testing  

   •       Check  is the purpose of fi eld performance analysis.  

   •       Act  is developing and executing a reliability roadmap to refi ne reliability require-
ments, correct residual design or implementation fl aws, and refi ne robustness and 
stability testing in subsequent system releases.      

 Field performance analysis fundamentally involves two actions:

   1.     Gathering and analyzing service reliability and availability measurements 
from in - service deployments (discussed in Section  8.2.2 ,  “ Service Reliability 
and Availability Measurements ” ).  

  2.     Root cause analysis of service outages, as well as acute and chronic service 
latency and service reliability impairments if possible.    

 The resulting data enable:

    •       Assessment of whether or not reliability/availability requirements were met  in 
the analysis period. Failure to meet requirements in production deployment often 
prompts aggressive development of a reliability roadmap (discussed in Section 
 12.9 ) and investment to execute the roadmap promptly.  

   •       Identifi cation of residual defects and vulnerabilities  that caused service avail-
ability, reliability, and latency impairments during the analysis period. Correcting 
the residual defects and mitigating vulnerabilities inevitably make up a substan-
tial portion of any reliability roadmap.  

   •       Validation, calibration, and refi nement of predictive models and associated bud-
geting  to track better with actual performance. These refi nements should enable 
models and budgets of future releases to be more accurate.     

   12.9    RELIABILITY ROADMAP 

 As explained in Section  12.2 ,  “ Tailoring DfR for Virtualized Applications, ”  existing 
applications often enhance their support or leverage virtualization and other features 
across several releases. For example, a preexisting application may initially support 
virtualization for hardware independence only, and then add support for resource 
sharing and multitenancy before fi nally supporting elastic growth and other advanced 
virtualization and cloud characteristics. Multirelease roadmaps are often a convenient 
way to manage the often diverse set of reliability and availability feature and test 
investments that will drive service availability to exceed customer expectations. As 
with traditional reliability roadmaps, a roadmap to cloud computing may enable one to 
estimate the service availability at each release on the journey.  



270 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

   12.10    HARDWARE RELIABILITY 

 Responsibility for hardware - attributed downtime, hardware failures, and related main-
tenance actions lies with the virtualized platform provider (e.g., cloud service provider) 
and the hardware system supplier(s), rather than the virtualized application supplier. 
Thus, hardware reliability diligence should be worked in the context of the virtualized 
(e.g., IaaS) platform rather than in the context of the virtualized application.  
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     Amazon Web Services ’  best practices for architecting cloud solutions  [Varia]  says:  “ be 
a pessimist when designing architectures in the cloud; assume things will fail. In other 
words, always design, implement and deploy for automated recovery from failure. ”
Solution  design for reliability  ( DfR ) is a methodical process that addresses the design 
for failure intent recommended by  [Varia], [Hamilton] , and elsewhere. This chapter 
introduces solution DfR, considers each of the solution DfR activities in detail, and 
discusses several related topics.  

13.1 SOLUTION DESIGN FOR RELIABILITY 

     Solution DfR is visualized in Figure  13.1 , and involves the following primary 
activities:

 •      Defi ne Key Service Reliability and Availability Requirements .      Good designs 
begin with clear and complete requirements. The best reliability and availability 
requirements include quantitative targets for maximum acceptable service dis-
ruption latency, service availability, service reliability, latency, and related behav-
iors for the target solution. The quantitative targets enable mathematical modeling 
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and permit richer architectural and design analysis than the qualitative require-
ments alone. Solution reliability requirements are covered in Section  13.3   

   •      Perform End - to - End Modeling and Analysis of Key Availability and Reliability 
Performance Metrics to Assure Feasibility of Meeting Targets .      Designing a solu-
tion is inherently complex because a large and diverse set of functional and 
nonfunctional requirements must be met along with strict cost and schedule 
constraints. These constraints drive architects to select most or all of the hardware 
and software (i.e., systems), environments, networking, power, policies, and 
humans to be preexisting or  “ off the shelf ”  (also known as commercial off - the -
 shelf, or COTS). The modeling and analysis step checks whether it is feasible 
that a potential  “ paper ”  design will meet the reliability and availability require-
ments over the long term. As various arrangements of components are considered 
to maximize the design goals and requirements while simultaneously not exceed-
ing cost and schedule targets, modeling and analysis enables these options to be 
quickly assessed from a reliability and availability perspective so the project team 
can select the overall optimal solution architecture and design. Solution modeling 
and analysis is covered in Section  13.4 .  

   •      Execute DfR Diligence on Included Elements .      Ideally, the DfR diligence of 
systems considered for inclusion will be assessed and considered before deciding 
whether or not to include a particular system in the solution. Just as the cost of 
correcting a defect found later in the development and deployment cycle is higher 
than if it is found earlier, it is generally cheaper to simply avoid using systems 

     Figure 13.1.     Solution Design for Reliability.  
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with unacceptable fi eld performance or inadequate DfR diligence than it is to 
attempt to address issues after the element is selected. Element reliability dili-
gence is discussed in Section  13.5 .  

 •      Validate Solution to Assure Service Reliability and Availability Targets Are Likely 
to Be Met .      Testing is necessary to validate that the solution meets both its 
functional requirements as well as nonfunctional requirements, like security, 
quality, reliability, and availability. Solution testing and validation are covered 
in Section  13.6 .  

 •      Track Field Performance Against Key Service Reliability and Availability Targets, 
and Drive Appropriate Corrective Actions if Those Targets Are not Consistently 
Met or Exceeded .      It is well known that what isn ’ t measured can ’ t be managed 
well. Thus, well - run enterprises defi ne  key quality indicator s ( KQI s) covering 
service quality, reliability, and availability, establish quantitative targets for those 
metrics, measure those values, and compare to targets. Metrics are reported to 
enterprise leaders on a weekly, monthly, quarterly, and/or annual basis, and cor-
rective actions are expected for any KQIs that fail to meet targets. Best practice 
is to tie enterprise compensation to achieving these KQIs so the fi nancial interests 
of enterprise personnel are better aligned with the interests of end users. Beyond 
addressing root causes of specifi c service impairment incidents (e.g., fi xing the 
particular defect that triggered a particular outage), it is often appropriate to refi ne 
the planned DfR diligence for the next solution release, such as: 
�      Adding or refi ning requirements  related to automatic detection and recovery 

for defects that escaped to the fi eld and produced service impairments  
�      Calibrating, validating, and refi ning mathematical modeling  so predictions of 

future releases are more accurate.  
�      Rechecking DfR diligence of included elements  associated with service 

impairments
�      Adding or refi ning robustness and/or stability tests  to reduce the risk of similar 

defects escaping from solution testing into production deployment.        

 Tracking and analysis of solution fi eld performance is covered in Section  13.7 .  

13.2 SOLUTION SCOPE AND EXPECTATIONS 

 Detailed solution architecture and design begins by bounding the scope of the end to 
end service delivery path that is in - scope for the solution architecture and design, and 
what equipment, facilities and other components are outside of scope (i.e., not open for 
redesign) and thus must be accepted  “ as is. ”  For example, if service users will access 
the application via their choice of browsers on their own personal device via their own 
wireless carrier ’ s network, then the likely operational characteristics of that equipment 
and those facilities should be accepted as a given. Having defi ned the scope of the 
solution, one can frame the high - level KQI expectations for service quality, reliability, 
and availability as seen by end users across the end to end solution. Often, one also 
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sets target KQIs for end users that include facilities and equipment beyond what 
the cloud supplier is strictly accountable for. While this true end user KQI target is 
generally beyond the control of the enterprise, considering the broader perspective, as 
well as the narrower accountability perspective enables better solution architecture and 
is ultimately likely to produce a better — and perhaps more cost effective — solution 
because the performance expectations and assumptions of other elements have been 
explicitly considered. 

 Consider the sample end to end solution example of Figure  13.2 . A client appli-
cation runs on a mobile device which communicates across a wireless network and 
the public internet, to one of the infrastructure as a service (IaaS) service provider ’ s 
data centers hosting the target application. Assume end users expect 99.9% service 
availability, less than 400 millisecond transactional latency for at least 95% of their 
operations, and less than 100 defects per million (DPM) service reliability for their 
transactions. A solution architect can then estimate the likely service availability, reli-
ability and latency across the out - of - scope solution elements and facilities, and select 
a budget for in - scope solution components that makes it feasible to meet end to end 
performance targets over the long term. In this example, we assume the MP 3 targets 
for the solution to present 99.99% service availability to the public internet with less 
than 100 milliseconds of latency 95% of the time and no more than 20 DPM. While 
the cloud consumer has little or no control over the service quality, reliability, or avail-
ability of the public Internet, the end users ’  wireless access network, or the users ’  
wireless devices, having considered the overall solution the architect can set balanced 

     Figure 13.2.     Sample Solution Scope and KQI Expectations.  
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expectations for both the in - scope cloud consumer and cloud provider solution ele-
ments, as well as the out - of - scope elements and facilities.    

   13.3 RELIABILITY REQUIREMENTS 

 This section considers the following categories of solution reliability and availability 
requirements:

 •      service availability requirements (Section  13.3.1 );  
 •      service reliability requirements (Section  13.3.2 );  
 •      disaster recovery requirements (Section  13.3.3 ); and  
 •      elasticity requirements (Section  13.3.4 ).    

 Note that these requirements make extensive use of the MP 3 and MP 2 measurement 
points introduced in Section  10.6.1 . 

   13.3.1 Solution Availability Requirements 

 Solutions typically have several types of users who interact with the solution for dif-
ferent reasons, and often via different protocols, applications, and systems. In addition 
to end users, there are often maintenance engineers who operate, back up, and maintain 
the solution and included components. There may also be provisioning or data entry 
staff that add, modify, and delete application data and/or user account information. 
There may be software programs that autonomously interact with the solution, and there 
are often business support systems that extract usage data that is used to measure service 
and often charge cloud consumers based on the resources they actually used. There 
may even be regulatory or compliance offi cers or systems who monitor the overall 
solution or individual components. Each of these user types may access different types 
of service from the solution and may have different key quality expectations for service 
reliability and service availability. Solution availability requirements begin by specify-
ing the highest level expectations of primary solution users across multiple cloud data 
centers (KQI 3), such as:

   1.     End user service across multiple [cloud] data centers is at least 99.995% avail-
able (MP 3 measurement).  

  2.     Cloud consumer ’ s maintenance staff shall experience operations, administra-
tion, maintenance, and provisioning (OAM & P) service across multiple [cloud] 
data centers at least 99.995% available (MP 3 measurement).    

 Requirements can also be set for single data center service availability (MP 2), 
such as:
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   3.     End user service across a single [cloud] data center is at least 99.97% available 
(MP 2 measurement).  

  4.     Cloud consumer ’ s maintenance staff shall experience OAM & P service 
across a single [cloud] data center that is at least 99.97% available (MP 2 
measurement).    

 Alternately, the MP 2 target(s) can be set during the architecture and analysis phase of 
solution design from modeling results that make MP 3 requirements feasible and likely.  

13.3.2 Solution Reliability Requirements 

 Service reliability requirements are often specifi ed as defective transactions per million 
service operations (DPM) in conjunction with a maximum acceptable service latency, 
so it is clear exactly when a slow service response is considered a failed transaction. 
Service latency targets (e.g., median and 95th percentile service latencies) can also be 
specifi ed at the solution level, as they were in Section  12.3.2 ,  “ Service Reliability and 
Latency Requirements, ”  for the application level. Thus one can construct service reli-
ability and latency summaries like Table  13.1 :   

 Formal service reliability and service latency requirements can include:

   1.     End users shall experience an average service reliability across multiple [cloud] 
data centers of less than 100 defective transactions per million attempts (DPM), 
which is at least 99.99% reliable 

  2.     OAM & P transactions shall experience an average service reliability across 
multiple [cloud] data centers of less than 100 defective transactions per million 
attempts (DPM), which is at least 99.99% reliable  

  3.     The maximum acceptable solution service latency is shown in Table  13.1 .  

  4.     The solution shall continuously meet all service reliability and service latency 
requirements (of Table  13.1 ) when offered load is less than or equal to the 
engineered capacity of the solution under test.    

 Note that the MP 1 service reliability requirements for application elements in the 
service delivery path accumulate to create the solution MP 2 value. While MP 2 service 

  TABLE 13.1.    Sample Solution Latency and Reliability Requirements 

   Transaction 
Type  

   Maximum 
50th Percentile 

Latency
(Milliseconds)

   Maximum 
95th Percentile 

Latency
(Milliseconds)

   Maximum 
Acceptable

Service Latency 
(Milliseconds)

   Maximum Number 
of Defects per 

Million Operations 
(DPM)

  Logon    3,000    6,000    15,000    20  
  Query    500    1,000    5,000    10  
  Update    2,000    4,000    10,000    20  
  Logoff    500    1,000    6,000    10  



RELIABILITY REQUIREMENTS 277

latency and reliability might be better than a straight sum of MP 1 values, one must 
always remember that solution component performance must generally be signifi -
cantly better than the solution requirement. Thus, a fi ve 9 ’ s single data center solution 
(MP 2) is not built by integrating a series of fi ve 9 ’ s components (MP 1) because 
downtime and defective operations typically accumulate across the components of the 
solution.

 While service availability requirements or targets consider both MP 2 and MP 3, 
service reliability requirements apply only to MP 2 on the assumption that a user will 
be served by a single cloud data center throughout a single session unless service from 
that cloud data center becomes unavailable (hence impacting availability MP perfor-
mance) or the user is explicitly migrated to another cloud data center (considered in 
Section  13.3.4 ,  “ Elasticity Requirements ” ).  

13.3.3 Disaster Recovery Requirements 

 Beyond requirements for service reliability and availability, solution requirements 
should also cover disaster  recovery time objective s ( RTO ) and  recovery point objectives  
( RPO ), along with any special disaster recovery considerations. For example:

   1.     The disaster RTO to restore user service to a georedundant [cloud] data center 
shall not exceed 2 hours.  

  2.     The disaster RPO for user data following georedundant recovery shall not 
exceed 10 minutes.  

  3.     The disaster RPO for operations and provisioning data following georedundant 
recovery shall not exceed 5 minutes.  

  4.      Cross - border disaster recovery shall be supported . This requirement gives the 
cloud consumer and cloud service provider(s) more fl exibility, such as being 
able to recover service for users served by an impacted cloud data center in the 
United Kingdom to an alternate cloud data center in Eastern Europe or perhaps 
North America. Note that the fl exibility of cross - border disaster recovery may 
raise a variety of data privacy, regulatory/compliance, and other issues that must 
be worked in addition to the regular technical and operational challenges of 
disaster recovery.     

13.3.4 Elasticity Requirements 

 Rapid elasticity enables the resources available to an application instance to be increased 
or decreased while the application is online, rather than the traditional model of requir-
ing the application to be shutdown, reconfi gured, and restarted. As online elastic growth 
and elastic degrowth often require different architectures, designs, and procedures than 
offl ine growth and degrowth do, requirements should explicitly specify the behavior of 
both supported online growth and degrowth. Moreover the growth and degrowth will 
have limits and require fi nite time to complete. Thus, elastic growth requirements might 
be structured as:
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   1.     A solution instance deployed to a particular [cloud] data center shall support 
online capacity growth in increments of < X >  [users | capacity units] that com-
plete in no more than < Y >  seconds/minutes per increment to a maximum of 
< Z >  [users | capacity units].  

  2.     Additional solution capacity can be brought online by instantiating the service 
in another [cloud] data center in no more than < X >  hours/minutes, with addi-
tional capacity to serve at least < Y >  [users | capacity units].  

  3.     It shall be possible to distribute new users across [elastically grown] new data 
center instances of the solution without impacting existing users. 

 Elastic degrowth requirements might be structured as:

   4.     It shall be possible to gracefully reduce resource usage by an application 
instance as traffi c decreases.  

  5.     It shall be possible to gracefully (i.e., with minimal or no service disruption) 
migrate traffi c away from a solution data center instance so that a solution data 
center instance (e.g., resulting from a cloudburst event) can be taken offl ine to 
reduce online capacity as traffi c load decreases without impacting existing 
users.    

 The primary online elasticity expectation is that elasticity events should not produce 
unacceptable service impact for users, thus requirements similar to those for live migra-
tion can be applied:

   1.     In no cases will elastic growth or degrowth cause the maximum acceptable 
service latency (from Table  12.1 ) or maximum DPM rate (also from Table  12.1 ) 
to be exceeded for existing users. 

  2.     During the elastic growth or degrowth event, the 95th percentile of service 
latency will be no greater than twice the applicable normal 95th percentile 
service latency requirement (from Table  12.1 ).  

  3.     Elastic growth or degrowth shall cause no nonvolatile data — including perfor-
mance counts, provisioning data, or usage/billing information — to be lost.    

 Note that elastic de - growth is generally more complicated than elastic growth since 
service for existing users should not be impacted.  

13.3.5 Specifying Confi guration Parameters 

 Achieving solution failure detection and recovery requirements often requires various 
protocol timers, maximum retry counts and other confi gurable parameters to be set 
appropriately. These confi guration parameters may be necessary to assure the feasibil-
ity of the solution meeting its service reliability and availability requirements, and 
often impact the confi guration of one or more individual elements of the solution. 
Some teams will capture these confi gurable parameter settings in solution requirements, 
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architecture, installation, or confi guration guides; some will push them to the individual 
elements ’  requirements or confi guration guides. Regardless of a solution team ’ s specifi c 
process, it is often important to explicitly capture the confi guration details necessary 
for a solution ’ s high availability mechanisms and make sure the confi guration details 
are communicated to impacted elements in order to perform properly and so that solu-
tion reliability and availability expectations can be met when the service is deployed.   

   13.4    SOLUTION MODELING AND ANALYSIS 

 Having established KQI expectations and requirements, one constructs a reliability 
block diagram of the solution to identify elements in the critical service delivery path 
(Section  13.4.1 ) and to verify no single points of failure. One completes both failure 
mode effects analysis (FMEA) (Section  13.4.2 ) and service transition activity analysis 
(Section  13.4.3 ) to assure that solution requirements can be met including inevitable 
failures and planned activities. One also completes mathematical modeling to assure 
the feasibility of meeting primary data center (MP 2) service availability requirements 
and aggregate data center (MP 3) service availability. One completes a paper georedun-
dancy analysis to assure that timing of data backup, replication, synchronization, and 
so on, assures that the RPO requirements can be met, and that element confi gurations 
(especially heartbeat timers, retry counts, and failure recovery strategies) and architec-
tures make it feasible and likely that RTO requirements can be met (Section  13.4.6 ). 

 This section will use the sample application from Figure  10.1 , which is repeated 
as Figure  13.3 .   

   13.4.1    Reliability Block Diagram of Cloud Data Center 
Deployment 

 The fi rst step in solution reliability analysis is to complete a reliability block diagram 
of all service impacting solution components in a single cloud data center. This 
reliability block diagram should highlight whatever relevant redundancy is deployed 
within a single cloud data center. If some cloud data centers have materially differ-
ent confi gurations — such as different redundancy arrangements — then create RBDs for 

     Figure 13.3.     Sample Cloud Data Center RBD.  
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each different cloud data center confi guration. Having constructed RBDs of cloud 
deployment architectures, one verifi es that there are no single points of failure.  

13.4.2 Solution Failure Mode Effects Analysis 

 As described in Section  5.1.3 , a solution FMEA considers the service impact of the 
failure of any component in the data center reliability block diagram. The FMEA table 
should include one row for each solution component, and columns for the expected 
impact to primary service for primary solution users (e.g., end users, maintenance 
engineers, provisioning staff, regulatory/compliance systems, or users). 

 Failure of the primary data center itself is mitigated via georedundancy and is 
considered in the context of MP 3 modeling and analysis.  

13.4.3 Solution Service Transition Activity Effects Analysis 

 One must consider the service impact for all maintenance activities, including elastic 
online growth, elastic online degrowth, and software patching and upgrade for each 
component in the solution. For each growth, degrowth, or software change (e.g., patch 
application, OS upgrade) event the maintenance activity analysis should list:

 •      strategy for minimizing service disruption, such as whether traffi c must be 
migrated to operational components before service transition action, or whether 
any changes need to be made to service orchestration (e.g., new or updated 
policies);

 •      service impact if operation is successful; and  
 •      likely service impact and recovery technique if operation is unsuccessful.    

 One can organize a service transition analysis like a failure mode analysis except spe-
cifi c activities appear as rows (e.g., horizontal growth of front - end server instances and 
degrowth of front - end server instances) with columns for each class of primary users, 
and individual cells capture the service impact on that particular class of user when the 
particular service transition action is executed.  

13.4.4 Cloud Data Center Service Availability ( MP 2) Analysis 

 Service availability from a single cloud data center (i.e., MP 2 availability) can gener-
ally be modeled algebraically by summing the expected annual downtime for each 
element (i.e., MP 1) in the cloud data center RBD. Figure  13.4  shows predicted annual-
ized service downtime for each component of Figure  13.3 , as well as the sum of pre-
dicted downtime across all components and facilities. Inevitably individual components 
will perform better or worse in any particular month, quarter or annual measurement 
period. For example, the Uptime Institute  [UptimeTiers]  reports that Tier IV data 
centers are likely to experience one 4 - hour failure in a 5 - year period, rather than accrue 
48 minutes of service downtime every single year. Nevertheless, annualized downtime 
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predictions are standard and they are a useful tool for analysis, comparison, and 
planning.    

   13.4.5    Aggregate Service Availability ( MP  3) Modeling 

 MP 3 considers the overall service availability offered across a pool of two or more 
geographically redundant cloud data centers hosting the target solution. In the most 
general case, users served by an impacted data center will be redistributed across several 
operational data centers that are geographically close enough to the impacted users to 
deliver service with acceptable service quality and latency. Distributing the recovery 
load across multiple operational sites may produce shorter recovery times because 
the workload to reregister/reauthenticate, reestablish sessions, and rebuild context of 
impacted users would be naturally spread across multiple data centers. While the high 
availability mechanisms generally protect an application instance on a single site by 
rapidly recovering volatile data for active users and sessions to minimize user visible 
service impact of failure and recovery actions, georedundant recoveries do not generally 
automatically include volatile user data, so visible impact of failure and recovery is 
often greater for those services that use volatile data. Thus, georedundant recovery may 
be inappropriate for partial capacity or partial functionality outages where some or all 
users of the affected site have at least partial service because a georedundant recovery 
may have a more negative impact on the otherwise affected users than continuing 
attempts to recover on the affected site itself. 

 As described in Section  9.5 ,  “ Georedundancy Recovery Models, ”  and  [Bauer11] , 
there are three fundamental georedundant recovery strategies: manually controlled, 
server driven, and client initiated; estimating the availability benefi t of each is consid-
ered separately. 

     Figure 13.4.     Estimating MP 2.  

Public
Internet

Routing
Perimeter
Security

Load
Balancing

Application
Front End

Application
Back End

Database
Server

Tier IV
Data

Center

Power
Environment

Interconnection

99.9999%
0.5 min

99.9999%
0.5 min

99.9999%
0.5 min

99.999%
5.3 min

99.999%
5.3 min

99.999%
5.3 min

99.99%
48 min

99.988%

64 minutes per year of MP 2 downtime

Availability
Downtime



282 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS 

13.4.5.1 Estimating MP 3 for Manually Controlled Georedundant 
Recovery.     The latency for manually controlled georedundant recovery is a function of:

 •      How rapidly maintenance engineers detect the failure and decide to initiate 
manual georedundant recovery,  

 •      How long it takes for user service to be recovered when manual georedundant 
recovery procedure is executed,    

 These factors can be summed to estimate the per event service downtime when 
manually controlled recovery is executed. After the failure of the primary data center 
is corrected, the primary data center will typically be returned to serving user traffi c. 
If there is any service impact when the recovered application instance in the primary 
data center is returned to serving user traffi c, then that service downtime should also 
be included. 

 One then considers the predicted MP 2 service unavailability events to identify 
which of those events should be mitigated via manually controlled georedundant recov-
ery, and replaces the MP 2 downtime estimate for those events with the sum of esti-
mated manually initiated recovery and switchback latencies. Since manually controlled 
georedundant recovery is likely to impact all users served by the target data center, 
georedundant recovery is generally undesirable for mitigating partial outages, which 
have not impacted 100% of the users of the target data center. Likewise, for some 
failures, it will be faster with less overall service impact to simply repair (e.g., restart 
some software module) and recover service in the original data center rather than 
switching service to one or more georedundant sites, and later recovering it back to 
the recovered site.  

13.4.5.2 Estimating MP 3 for Server -Driven Georedundant Recovery. 
The service availability benefi t of automatic server - driven georedundancy can generally 
be estimated using appropriate traditional redundancy models (e.g., active – standby and 
N     +     K  load sharing) with appropriate input parameters and appropriate corrections for 
failures not recovered via georedundancy; see  [Bauer11]  for more details. Do not be 
surprised if server - driven recovery offers only a modest predicted benefi t compared 
with manually controlled georedundant recovery.  

13.4.5.3 Estimating MP 3 for Client -Initiated Georedundant Recovery. 
Solution clients (e.g., smartphone, laptops, and tablets) can implement client - initiated 
georedundancy mechanisms to effi ciently detect service unavailability and autono-
mously initiate service recovery to an alternate application instance in a georedundant 
data center. Figure  13.5  illustrates the canonical confi guration: client  “ A ”  accesses 
service offered by a pool of cloud data centers  “ B1 ”  through  “ Bn. ”  Assume the client 
establishes a service session with cloud data center  “ B1, ”  a failure occurs that renders 
service unavailable from data center  “ B1, ”  so the client  “ A ”  must detect unavailability 
of  “ B1, ”  identify an alternate data center offering the service (e.g., via DNS), establish 
a session with an alternate cloud data center, and restore service state/context with 
redundant application instance before the client can resume using the service. Unlike 
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both manually controlled and server - initiated georedundant recoveries, where there is 
essentially one party controlling the recovery, control in client - initiated recovery is 
inherently distributed across the entire pool of client users because each client is respon-
sible for its own recovery. In addition, since the client is driving the recovery action, 
the client can proactively store and rebuild session context to minimize user - visible 
impact of the failure event and recovery action.   

 The availability of service protected via client - initiated recovery can be predicted 
via the Markov client -  initiated recovery model from  [Bauer11]  shown in Figure  13.6 ; 

     Figure 13.5.     Modeling Cloud - Based Solution with Client - Initiated Recovery Model.  
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     Figure 13.6.     Client - Initiated Recovery  Model from  [Bauer11]  .  
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  TABLE 13.2.    Modeling Input Parameters from  [Bauer11]  

   Symbol     Description  

λ     Critical failure rate of solution hosted by target data center instance 
experienced by a client  

  F EXPLICIT     Portion of critical failures of primary system that are explicitly 
reported to client systems (rather than profound nonresponse, 
which triggers time outs)  

  C CLIENT     Portion of error responses from critical failures that trigger 
client- initiated recovery  

μCLIENT     Automatic client failover (or takeover) rate  
  A CLUSTER - 1     Service availability of alternate data center(s) after solution service 

offered by target data center is unavailable  
μCLIENTSFD     Rate for client to determine that uncovered - to - client failures (e.g., 

failures signaled with wrong return code) are detected  
  F CLIENT     Portion of automatic client recoveries that succeed  
μTIMEOUT     Overall time for client to time out from nonresponsive server  
μDUPLEX     Duplex system recovery rate  
μGRECOVER     Rate (mathematical reciprocal of duration) of orderly service 

migration from alternate georedundant site back to primary data 
center

μMIGRATION     Rate (mathematical reciprocal of duration) of service disruption on 
orderly service migration to alternate data center 

Table  13.2  describes the modeling input parameters.  [Bauer11]  describes how to esti-
mate input parameters and integrate the result with standard modeling results to create 
an overall estimate. The two particular considerations when applying this model to 
cloud data centers are:

 •       λ  (critical failure rate experienced by clients) inherently integrates all causes of 
failure for both service components in the primary data center, as well as sup-
porting infrastructure like power and network interconnections.  

 •       ACLUSTER    −    1  (service availability offered across pool of data centers after the cli-
ent ’ s selected or primary data center is unavailable) is generally the MP 2 value 
of the georedundant data center hosting an alternate instance of the target applica-
tion or solution. This value will be somewhat higher than MP 2 when multiple 
alternate data centers are available to serve clients following the failure of one 
data center, but operational considerations, like how fresh and accurate the infor-
mation provided to clients regarding available data centers is and the extent 
of how excess online capacity maintained ready to serve recovering clients,
impacts the effective  ACLUSTER   −    1 .          
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13.4.6 Recovery Point Objective Analysis 

 A recovery point analysis identifi es:

 •      all nonvolatile data maintained by an application;  
 •      the offsite backup, replication, or mirroring strategy; and  
 •      the scheduled frequency of those backup, replication, or mirroring events.    

 One then verifi es that the scheduled frequency assures that the RPO requirement is not 
violated.   

13.5 ELEMENT RELIABILITY DILIGENCE 

 Solution architecture and budgeting should establish feasible and reasonable service 
reliability and availability requirements for included components, and modeling should 
verify that if these budgets are met by the components then the solution - level require-
ments should be met. The purpose of the element reliability diligence is to assure that 
it is both feasible and likely that each component in the service delivery path of the 
solution will meet the reliability and availability requirements of the solution. 

 Design for reliability of traditional information and computer - based systems is 
detailed in  [Bauer10]  and DfR of virtualized applications is covered in Chapter  12 , 
 “ Design for Reliability of Virtualized Applications. ”  Ideally, DfR diligence will be 
completed on all elements before they are included in the solution, and hopefully that 
diligence will assure that it is feasible and likely for the element to meet the quantitative 
KQI expectations cascaded from the solution KQI budget discussed in Section  10.6 , 
 “ Solution Service Measurement. ”  If the status of an element ’ s DfR diligence is unknown, 
or fi eld data suggest elevated service quality, reliability, and/or availability risks, then 
a high - level DfR assessment of the element is recommended. Chapter  15  entitled 
 “ Appendix: Assessing Design for Reliability Diligence ”  in  [Bauer10]  gives details on 
completing such an assessment.  

13.6 SOLUTION TESTING AND VALIDATION 

 All components included in a solution should have been thoroughly tested at the com-
ponent level, so solution - level testing can focus on verifying both the functional require-
ments for solution features, as well as nonfunctional requirements, like service reliability. 
This section considers validation of solution reliability and availability requirements, 
especially robustness testing, reliability testing, georedundancy testing, elasticity and 
orchestration testing, and stability testing. Adequate predeployment testing should 
enable occasional in - service testing (e.g., periodic disaster drills to verify georedundant 
recoveries) to be executed to assure the deployed solution is likely to achieve its reli-
ability and availability requirements. 
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13.6.1 Robustness Testing 

   Robustness testing at the element level verifi es that likely component related failures 
do not cause unacceptable service impact to MP 1. Robustness testing at the solution 
level verifi es that inevitable element failures do not cause unacceptable service impact 
to MP 2 and MP 3. Component level robustness testing should address the ordinary 
hardware, programming, data, power, and other system specifi c failure scenarios of 
 “ Figure  4.6  — Traditional Error Vectors ”  and  “ Figure  12.4  — Robustness Testing Vectors 
for Virtualized Applications. ”  Solution robustness testing verifi es that the solution level 
service impact of these and other failures does not cause unacceptable service impact. 
Thus solution level robustness testing should consider at least the following 
scenarios:

 •      catastrophic failure (i.e., total unavailability) of every individual solution 
component;

 •      IP connectivity degradation (i.e., packet loss), disruption, and failure between 
solution components;  

 •      network latency and jitter between solution components;  
 •      overload of individual solution components; and  
 •      inconsistent real - time clock settings on the physical servers hosting solution 

components.    

 Data center unavailability and WAN failures are considered in georedundancy testing 
(Section  13.6.3 ).  

13.6.2 Service Reliability Testing 

   Solution - level testing should verify that service reliability (i.e., DPM) and service 
latency requirements (Section  13.3.2 ) are met for key service operations to primary 
solution users. Many million attempts of high volume transactions should be measured 
to accurately characterize the service reliability and latency. As it may be infeasible to 
attempt millions of iterations of high latency or nominally low volume transactions, a 
reasonable number of repetitions should be completed to assure that those transactions 
are also acceptable reliable and rapid.  

13.6.3 Georedundancy Testing 

   Georedundancy testing verifi es prompt service recovery to an alternate data center with 
acceptable service impact. Depending on the solution architecture and design, geo-
redundant recovery can be activated in at least the following scenarios:

   1.     Catastrophic unavailability of the primary data center  

  2.     WAN unavailability prevents at least some users ’  client devices from commu-
nicating with the primary data center 
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  3.     Catastrophic (e.g., duplex) failure of component instances at the primary data 
center prevent timely service recovery by primary data center  

  4.     Orderly service migration to drain solution traffi c from primary data center, 
prior to execution of a profound reconfi guration or maintenance action  

  5.     Orderly service migration back to the primary data center from a georedundant 
data center    

 Georedundancy testing should verify that service disruption for each of these scenarios 
is within specifi cation, that is, RTO and RPO requirements are met for disaster recovery 
scenarios, and the service disruption for nondisaster scenarios does not exceed the 
maximum acceptable service disruption for that scenario.  

13.6.4 Elasticity and Orchestration Testing 

 Elasticity and orchestration testing     should both verify that service reliability require-
ments are met during successful elastic growth and degrowth testing, and that service 
orchestration and elasticity failures are automatically detected and recovered without 
producing unacceptable service disruption.  “ Figure  7.14  — Elasticity Failure Model ”  
offers a handful of general failure scenarios to explicitly consider. At least the following 
adversarial elasticity scenarios should be considered for formal verifi cation via solution 
level testing:

 •       Slashdot scenario  — (see Section  7.1.2 )   traffi c spikes faster than the elasticity 
slew rate can grow online capacity.  

 •      Orchestration infrastructure and/or IaaS provider is nonresponsive.  
 •       IaaS resource stock - out  — a resource allocation request fails outright.  
 •       IaaS resource shortage  — IaaS provider offers less resource than was requested.  
 •       IaaS provider is slow  to respond to allocation requests.  
 •       IaaS allocation requests nominally succeed , but allocated resource is unavailable 

or otherwise unusable  
 •      Wide and rapid fl uctuations in offered load.     

13.6.5 Stability Testing 

 Stability testing   is to verify that the cloud - based solution is completely stable and meets 
service reliability requirements while enduring a sustained period of heavy and mixed 
usage (often at least 72 hours). Ideally, stability testing will include periods of heavy 
load lasting longer than the longest typical daily busy period. For example, if an appli-
cation normally serves 12 continuous hours of heavy load per day, then the stability 
test should include periods of heavy sustained loads for signifi cantly longer (e.g., 16 
or 18 hours). Provisioning and operational activities should also be included in the 
stability test. Ideally, the stability test will include online elastic growth and degrowth, 
as well as live migration. Service reliability and latency should be measured throughout 
the stability test to assure that requirements are met throughout the test.  



288 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS 

13.6.6 In Service Testing 

 Practicing disaster drills   once or twice a year to verify that business continuity plans, 
georedundancy confi gurations, manual procedures, and so on all function properly is a 
recognized best practice. In addition to verifying the confi gurations and procedures, 
disaster drills give staff valuable experience executing disaster plans so they will be 
more familiar with procedures and thus be more likely to execute them correctly in an 
emergency. 

 Just as disaster drills verify proper behavior of disaster recovery plans, limited 
failure scenarios can be induced in some solutions ’  production environments (subject 
to market ’ s expectations for transactional and service reliability and availability) to 
verify effi cacy of automatic failure detection and recovery mechanisms. Techniques 
that inject random failures into the system, such as those discussed in Section  11.6.5 , 
 “ Operational Considerations, ”  should be used to help verify those mechanisms. Among 
other things, solution validation and testing should assure that the recovery scripts are 
reliable and robust enough that they can be periodically tested on production systems 
to verify the robustness mechanisms and the policies, documentation, and training of 
the human staff that operate the solution.   

13.7 TRACK AND ANALYZE FIELD PERFORMANCE 

 While service availability of individual elements can be averaged across the total popu-
lation of elements to create a broad average, individual solutions are sometimes unique 
enough that it is inappropriate to attempt to create a useful and actionable analysis 
by simply aggregating fi eld performance of all other cloud consumers ’  solutions. For 
example, simply because two different commercial airlines happen to operate the same 
type of passenger jets does not mean that they will both achieve similar on - time depar-
ture and arrival performance. At the solution level, operational policies, solution archi-
tectures, and other factors become increasingly important. 

 As explained in Chapter  3 ,  “ Service Reliability and Service Availability, ”  the fol-
lowing metrics have traditionally been widely used:

 •       Service reliability  (see Section  3.4 ), especially defective transactions per million 
attempts. Sophisticated enterprises will track user service reliability for specifi c 
transactions (e.g., data query and data update) or specifi c service scenarios (e.g., 
service accessibility and service retainability).  

 •       Service latency  (see Section  3.5 ), especially median or average service latency. 
Sophisticated customers will also consider a tail latency like the 95th percentile 
service latency or the percentage of traffi c exceeding a fi xed latency target (e.g., 
greater than 500 milliseconds of latency).  

 •       Service availability  (see Section  3.3 ).    

 As discussed in Section  10.6.1 , MPs 1, 2, 3, and 4 are generally applicable service 
measurement points, which can be used as follows:
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 •      MP 1: Component Instance Availability .        Can be measured via a service probe 
installed in the data center hosting the target application instance. MP 1 can also 
be computed from trouble tickets, assuming those tickets capture suffi cient detail 
(e.g., outage and service recovery times, number of users or portion of service 
capacity impacted, and portion of functionality lost).  

 •      MP 2: Primary Data Center Availability .        Can be measured via a service probe 
installed outside of the target data center. Note that the MP 2 service probe must 
be confi gured to access only the target data center so client - initiated and other 
georedundant recovery must be inhibited for the MP 2 probe.  

 •      MP 3: Aggregate Service Availability .        must be measured via a service probe 
that uses the same client - initiated recovery logic and confi guration (e.g., 
time outs and maximum retry counts) as the client application(s) used by end 
users.

 •      MP 4: End - to - End Service Availability .        Should be measured from actual users 
devices or client software, ideally by characterizing actual end user experiences 
via software running on client devices. Raw MP 4 data may be read from indi-
vidual client applications if they record appropriate performance metrics and 
make that data remotely accessible. Alternately, a service probe application can 
be installed on some or all clients to explicitly probe and characterize service 
quality, reliability, and availability, and return the data to cloud consumers or 
service providers for offl ine analysis.    

13.7.1 Cloud Service Measurements 

 The rapid elasticity essential characteristic of cloud computing complicates service 
reliability and availability measurements because application instances will be dynami-
cally added and deleted, and user traffi c will be dynamically balanced across a varying 
pool of online application instances. Thus, if a particular user executes a particular 
application transaction repeatedly (e.g., viewing a particular web page or making a 
particular service query every hour or every day), then it is possible that at least some 
of those requests will be served by different application VM instances, and may even 
be served by different data centers. This dynamic and elastic nature of cloud - based 
services adds uncertainty to service measurements at the network element level, because 
it may be diffi cult both to trace unsuccessful client requests (i.e., slow or defective 
transactions) to specifi c application instances, as well as to deduce the end user impact 
of specifi c application instance failures. 

 Service reliability and service latency are inherently user - oriented metrics that 
naturally scale with elastic growth, geographic distribution, and reconfi guration of 
cloud - based applications. After all, defective transactions per million operations metrics 
naturally normalize when data for one hundred, one thousand, or one million users is 
considered from one or more application instances. Likewise, these metrics can be 
scaled down to individual application instances. For example, one can meaningfully 
analyze the median service latency or reliability of an individual application VM 
instance, as well as the median service latency and DPM for a particular data center. 
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 In contrast, traditional service availability is measured and normalized on a per 
system or per network element basis, and partial capacity loss outages are normalized 
against the engineered capacity of the affected system instance. Service availability of 
elastic applications might not be measured the same as service availability of native, 
deployments is measured. If the native application uses three server process instances 
and failure of one process instance is deemed a 33% capacity loss outage, then the 
same prorating can be applied to a non - elastic (i.e., non - cloud) virtualized deployment. 
Service availability measurements of cloud deployments are more challenging because 
the  “ rapid elasticity ”  characteristic of cloud computing translates to an elastic normal-
ization factor to prorate outages against. While catastrophic failures that render all VM 
instances of a cloud - based application utterly unavailable are obviously deemed total 
capacity loss outages, partial capacity loss outages (e.g., impacting a single VM 
instance, see Section  7.6.2 ,  “ Partial Capacity Failure ” ) are more common; thus, the key 
question is how to prorate these more likely partial capacity loss events. Theoretically, 
a partial capacity outage event of a cloud - based application could be prorated via one 
of the following strategies:

 •      Normalize by Maximum Contracted Service Capacity .      This is likely to under-
state the availability impact because some services will only rarely operate at 
maximum contracted capacity. If the event occurs at an off - peak period when 
engaged capacity is only a small fraction of contracted service capacity, then the 
normalized event will appear very small if considered at all.  

 •      Normalize by Total (Engaged Plus Spare) Online Capacity the Moment Before 
the Critical Failure Occurred .      This has the adverse impact of making availabil-
ity impacts look smaller for conservative enterprises, which maintain more spare 
online service capacity. In addition, the total capacity might be in fl ux if the 
failure is caused by or correlated with fl uctuations in traffi c volume that lead the 
cloud to add or release capacity.  

 •      Normalize by the Engaged Capacity the Moment before the Critical Failure 
Event Occurred .      Engaged capacity prior to the failure might not be known 
accurately, and the engaged capacity may well be impacted by the primary failure 
event itself, such as during elasticity related failures.  

 •      Normalize by the  “ Average ”  Engaged Capacity for the Duration of the Outage 
Event .      For example, one can determine average service utilization at the same 
time on the same day of the week for the past few (e.g., 4) weeks. This works 
well for established services with regular and stable traffi c patterns, but might 
not work well for services with rapidly growing or unpredictable traffi c volumes, 
or new services with insuffi cient historic data to reasonably characterize  “ average ”  
engaged capacity.    

 These imperfect options for normalizing partial capacity loss outages can be avoided 
by adopting probed accessibility style metrics that consider the probability that a 
 “ typical ”  user can successfully establish a new session or complete a new request at 
any particular instant, averaged across the entire measurement period, such as an entire 
month. These metrics are often measured from a service probe that launches requests 
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at the target application on a regular basis, such as every few minutes. If the probe 
client is successfully served, then the application is deemed to be up; if the probe client 
is not served successfully for several sequential attempts, then the application is deemed 
to be down. Service availability is computed by normalizing successful service responses 
to the probe client against the total number of service attempts executed by the probe 
client in the measurement period. 

13.7.1.1 On-Demand Self -Service Measurements.   Conceptually, on - demand 
self - service is analogous to end user service in that it can be neatly characterized with 
service reliability and service latency metrics. For example, the service reliability (e.g., 
DPM) of successfully allocating and engaging additional  “ elastic ”  resource capacity 
within a maximum acceptable time and the service latency of successful allocation 
and engagement are obvious and useful metrics to characterize one aspect of rapid 
elasticity. Thus service reliability and latency metrics can be useful for frequently 
executed self service actions. Enterprises should defi ne a service measurement archi-
tecture that enables solution KQIs to be accurately measured and for operations poli-
cies to be deployed so the performance data are examined with suitable regularity and 
appropriate corrective actions are taken if performance falls below target. 

 Note that for on - demand self service actions that are rarely executed it is generally 
more effective to focus on troubleshooting and correcting the individual executions 
which failed or experienced unacceptable service latency rather than struggling with 
statistical analysis of tiny data sets. After all, it is impractical to consider the service 
reliability of an operation that is performed only a couple of times per year.   

13.7.2 Solution Reliability Roadmapping 

 If a deployed solution is not consistently meeting its reliability and availability 
expectations, or if the expectations are rising, then one can construct and execute a 
roadmap of reliability -  and availability - improving features, testing enhancements, 
and other changes. While individual failure events should be subjected to root cause 
analysis and corrective actions, occurrence of more than a very small number of 
reliability and availability impacting failures suggests that a deeper analysis of the 
solution architecture and design should be performed, resulting in recommendations 
for improvement. Solution reliability roadmaps often include one or more of the fol-
lowing work items:

 •      Changes or enhancements to the failure detection and recovery mechanisms (e.g., 
tuning timers, adding more explicit error messages) implemented for the inter-
faces between elements.  

 •      Addition or enhancement of products, tools, or documentation to facilitate detec-
tion and troubleshooting of system failures.  

 •      Enhancements to maintenance activity tools and procedures to reduce system 
downtime or mitigate risks associated with performing those activities.      
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13.8 OTHER SOLUTION RELIABILITY DILIGENCE TOPICS 

 Three additional topics worth considering are:

 •      service - level agreements (SLA) (Section  13.8.1 );  
 •      cloud service provider selection (Section  13.8.2 ); and  
 •      written reliability plan (Section  13.8.3 ).    

13.8.1 Service-Level Agreements 

 Service - level agreements   or SLAs are for business remedies, not expectations of actual 
performance. For instance, a retailer that offers an  “ unconditional guarantee ”  doesn ’ t 
imply that customers will be 100% satisfi ed with products purchased from them, merely 
that they will replace a product or refund the purchase price if the customer is dissatis-
fi ed. Likewise, a  “ 100% ”  uptime SLA simply means that the service provider is pre-
pared to offer some remedy for any covered incident. The  “ fi ne print ”  of generally 
surrounds the defi nition of covered events and the offered remedy. While customers 
might like signifi cant remedies that make them  “ whole ”  after an incident (think hom-
eowner or automobile insurance), the service provider may offer only nominal remedies 
(e.g., a modest service credit) as a standard part of their offering. Various papers like 
 [InfoWeek]  offer practical information on constructing cloud computing SLAs. The key 
 “ real ”  option that cloud consumers should expect is the option to terminate a (long -
 term) contract/agreement without penalties because of major and ongoing SLA breach. 

 Thus, one should carefully consider the following when evaluating suppliers ’  
SLAs:

 •       Does the Measurement Metric Actually Model How the Service Will Be Needed 
by Users of the Target Solution?      For example, measuring service availability by 
probing a data center or application every 5 minutes doesn ’ t mean service was 
available every second or every minute, merely that it wasn ’ t down for more than 
5 minutes (or longer if the SLA requires sequential failures of two or more 5 
minute probes to trigger remedies).  

 •       Does the Offered Remedy Provide Meaningful Relief if SLA Is Missed?      Not 
charging customers for the time that a service is unavailable is polite, but does 
little to mitigate unavailability of critical services. Unlike insurance companies, 
service providers are unlikely to provide what make customers  “ whole ”  after a 
failure, but meaningful remedies to consider are: 
�     Root cause analysis and corrective actions for any SLA violation.  
�     Add additional customer support staff and/or replace existing support team.  
�     Be ineligible to bid for new contracts for other enterprise projects unless all 

SLAs are met.  
�     Right to cancel contract without penalty for any SLA violation.      
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 As important as the SLA itself are:

 •       Is It Technically Feasible and Likely for the Service to Meet the SLA Over the 
Long Term?      Solution architects should design around the feasible and likely 
estimated long - term performance levels rather than potentially misleading SLA 
claims.

 •       What Performance Level Has Been Demonstrated in the Past?      As with fi nancial 
products, past performance is no guarantee of future results, but it is a baseline. 
More importantly, if the supplier is unable or unwilling to provide extensive data 
on historic performance, then you should learn why. Is performance data unavail-
able because the service is new (which raises certain risks), or because the service 
provider does not actually measure performance (which raises other risks), or 
because the service provider does not share performance data with prospective 
customers (which raises still other risks).    

 More important that the availability SLA offered by a cloud service provider is the best 
estimate of the likely long - term average service availability. While past performance 
is no guarantee of future results, historic performance is far more credible than a weak 
SLA metric with nominal remedies.  

13.8.2 Cloud Service Provider Selection 

 The IaaS, PaaS, or SaaS service provider that a cloud consumer selects has a profound 
impact on the service quality, reliability, and availability that will be experienced by 
end users because the cloud service providers have direct control of virtually all the 
ingredients that comprise a cloud - based service. In addition to controlling the hardware, 
power, operational environment, IP networking data center maintenance staff, and poli-
cies governing operation of the data center, the service provider brings at least some 
platform software into the solution and at least some application protocol support (e.g., 
DNS, HTTP/HTTPS, and SNMP). Thus, cloud consumers should carefully determine 
the service quality, reliability, and availability targets of considered service providers, 
and verify the feasibility and likelihood of those targets being met over the long term. 
ODCA SLA levels (i.e., bronze, silver, and gold, platinum) may provide a useful frame-
work to use when discussing service quality, reliability, and availability expectations 
with XaaS service providers.  

13.8.3 Written Reliability Plan 

 A best practice is to create a written reliability plan   in the planning phase of a solution 
development to lay out the program of reliability diligence in advance. Depending on 
the organization ’ s development methodology, the reliability plan may either reference 
other documents (e.g., requirements and test plans) and artifacts (e.g., modeling spread-
sheets and reliability reports), or the plan may actually include or embed those items. 
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The reliability plan may be a document, or a presentation, or a spreadsheet, or a wiki, 
or some other scheme for organizing plans and artifacts. The exact representation is 
not particularly important; the thoroughness of the plan, care taken in executing the 
steps, and promptly notifying members of the project team when risks exceed accept-
able levels is most important. 

 The reliability plan, possibly in conjunction with the quality plan and the overall 
project plan, should cover the following topics:

 •      Solution Scope .      What is the end - to - end scope of the solution, and exactly what 
components and facilities are in - scope.  

 •      Solution KQI Targets for Service Reliability and Availability .      What are the key 
quality indicators for this solution and what are the targets for those KQIs? Note 
that these targets can be framed relative to previous releases, other deployments 
or competitive offers, or technologies. For example: 
�      Cloud - based solution will offer same service accessibility, retainability, reli-

ability, and availability as traditional deployment.
�      Solution will offer equivalent service availability and service reliability as 

market leading offering   < X > .    
 •      Verifi able Solution Reliability and Availability Requirements .      Specifi c require-

ments that will drive robustness and stability testing of solution and key compo-
nents of the solution.  

 •      Plans for Reliability Analyses (e.g., FMEA) .      Give plan for what reliability analy-
ses and reviews will be done by who and when, and what document or artifact 
will contain the fi nal analysis results.  

 •      Solution Modeling and Budgeting of Primary Quantitative KQI ’ s to Assure Fea-
sibility of Meeting Targets/Requirements .      Constructing mathematical modeling 
is a foundation for analyzing the feasibility and likelihood of achieving quan-
titative KQIs. Given some mathematical model, one can create allocations or 
budgets of key impairments or results across solution components and facilities, 
which solve the model and meet the requirements, and then manage individual 
components and facilities to those targets to assure the feasibility of meeting 
those requirements over the long term. 

 •      Data on fi eld reliability, availability, and quality of both previous solution 
release(s) and all included components.  

 •       Plans or Results of DfR Assessments of Components Included in the Solution .  
 •      Enumeration of Features and Testing Expected to Improve Service Reliability, 

Availability, and Latency, along with Brief Rationale for Any Expectations of 
Improvement .      Optionally, the reliability or availability improvement for the 
feature or tested can potentially be estimated via changes to input parameters or 
structure to mathematical modeling.  

 •      Plans to Report on Feasibility and Likelihood of Meeting Reliability Require-
ments with Plan of Record and Committed Resources to Project Leaders and 
Decision Makers .      As there is inherent uncertainty in assessing risk, and more 
time often offers more information to assess risk, there is frequently a temptation 
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to postpone raising a risk to the project team or decision makers in the hope that 
more time and more data will reveal that the risk is acceptable. To minimize the 
tendency to postpone reporting of bad news, it is often best to explicitly schedule 
regular updates on the reliability risk, such as at every project decision review 
or every month. Planning this in advance enables the reliability prime to plan to 
obtain appropriate updated information prior to each report on reliability risk, 
thereby assuring that decision makers and project team see fresh and realistic 
assessment of the reliability risk. 

 •       Plan for Measuring Service Reliability, Availability, Latency, and Quality KQIs 
of the Deployed Solution .    

 Best practice is to name an individual as the reliability prime   for the solution and make 
that individual responsible for assessing and reporting the reliability risk to both deci-
sion makers and the project team. As this individual knows they are expected to present 
and defend the reliability risk assessment — potentially charged and project - impacting —
 information regularly and held accountable for fi eld performance after release, then 
they will be highly motivated to assure that the reliability plan is both complete and 
methodically executed. Thus, the reliability prime is the obvious primary author for the 
reliability plan.     
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     Cloud computing is a business model that enables computing to be offered as a utility 
service, thereby shifting computing from a capital intensive activity to an expense item. 
Just as electric utilities and railroad companies freed consumers of power and land 
transportation from the capital expense of building private infrastructure, cloud com-
puting enables consumers to focus on solving their specifi c business problems rather 
than on building and maintaining computing infrastructure. The U.S.  National Insti-
tute of Standards and Technology  ( NIST ) offers fi ve essential characteristics of cloud 
computing:

   1.     on - demand self - service;  

  2.     broad network access;  

  3.     resource pooling;  

  4.     rapid elasticity; and  

  5.     measured service.    

 A handful of common characteristics are shared by many computing clouds, including 
virtualization and geographic distribution. Beyond shifting computing from a capital 
expense topic to a pay - as - you - go operating expense item, rapid elasticity and other 
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characteristics of cloud computing enable greater fl exibility and faster service deploy-
ment than traditional computing models. 

 Virtualization is one of the common characteristics of cloud computing. Virtual-
ization decouples application and operating system software from the underlying soft-
ware by inserting a hypervisor or virtual machine manager above the physical hardware, 
which presents a  “ virtual ”  machine to the guest operating system and application 
software running on that guest operating system. Virtualization technology can boost 
resource utilization of modern server hardware by permitting several application 
instances executing in virtual machines to be consolidated onto a smaller number 
of physical machines, thereby dramatically reducing the number of physical systems 
required. Applications generally leverage virtualization in one or more of the following 
usage scenarios:

    •      Hardware Independence .      Virtualization is used to enable applications to be 
deployed on different (e.g., newer) hardware platforms.  

   •      Server Consolidation .      Virtualization is used to enable several different applica-
tions to share the same physical hardware platform, thereby boosting utilization 
of the underlying physical hardware.  

   •      Multitenancy .      Virtualization is used to facilitate offering independent instances 
of the same application or service to different customers from shared hardware 
resources, such as offering distinct instances of an e - mail application to different 
companies.  

   •      Virtual Appliance .      Ultimately, software applications can be offered as download-
able  “ appliances ”  that are simply loaded onto virtualized platform infrastructure. 
While a commercially important application may not yet be as simple to buy and 
install as a household appliance, like a toaster, virtualization can streamline and 
simplify the process for customers.  

   •      Cloud Deployment .      Virtualization is used to enable applications to be hosted on 
cloud providers ’  servers, and take advantage of cloud capabilities, such as rapid 
elasticity growth and degrowth of service capacity.     

   14.1    SERVICE RELIABILITY AND SERVICE AVAILABILITY 

 Failures are inevitable. The service impact of failure is measured on two dimensions:

    •      Extent .      How many users or operations are impacted.  

   •      Duration .      How many seconds or minutes of service impact accrues.    

 While extent of failure linearly affects service impact (e.g., impacting 100 user sessions 
is nominally twice as bad as impacting only 50 sessions), the duration of impact is not 
linear because of the way modern networked applications are implemented. Failure 
impacts that are very brief (e.g., less than 10 or perhaps a few hundred milliseconds) 
are often effectively concealed from end users via mechanisms like automatic protocol 
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message retries for transactions and lost packet compensation algorithms for streaming 
media; these brief events are often referred to as  transient . Failures that are somewhat 
longer (e.g., less than a few seconds) will often cause some transactions or sessions to 
present signs of failure to users, such as web pages failing to load successfully, call 
attempts failing to complete and returning ringback promptly, or noticeable impair-
ments to streaming media sessions. Service users will often accept occasional service 
failures and retry failed operations, such as canceling a stuck webpage and explicitly 
reloading the page, or redialing after a failed call attempt. If the fi rst (or perhaps second) 
retry succeeds, then the failed operation will typically count against service reliability 
metrics as a defective operation; since service was only impacted briefl y, the service 
will not have been considered  “ down ”  so the failure duration will not count as outage 
downtime. However, if the failure duration stretches to many seconds, then reasonable 
users will abandon service retries and deem the service to be down, so availability 
metrics will be impacted. This is illustrated in Figure  14.1 .   

 Since failures are inevitable, the goal of high availability systems is to automati-
cally detect and recover from failures in less than the maximum acceptable service 
disruption time so that outage downtime does not accrue for (most) failure events, and 
ideally service reliability metrics are not impacted either, as shown in Figure  14.1 . The 
maximum acceptable service disruption target will vary from service to service based 
on user expectation, technical factors (e.g., protocol recovery mechanisms), market 
factors (e.g., how reliable alternative technologies are), and other considerations. Thus, 
the core challenge of service availability of cloud computing is to assure that inevitable 
failures are automatically detected and recovered fast enough that users don ’ t experi-
ence unacceptable service disruptions.  

     Figure 14.1.     Failure Impact Duration and High Availability Goals.  
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   14.2    FAILURE ACCOUNTABILITY AND CLOUD COMPUTING 

 Information systems require a handful of fundamental ingredients to function. Comput-
ing  hardware  executing application  software  interworks with client devices via applica-
tion protocol  payloads  across IP  networks . The computing hardware is installed in a 
suitable data center  environment  and must be provided with suitable electrical  power . 
Application software and the underlying hardware inevitably require application, user 
and confi guration  data  to provide useful service.  Human  staff is required to provision 
and maintain the data, software, hardware, and supporting infrastructure; enterprise 
 policies  defi ne the interactions between ingredients and guide the actions of human 
staff. In addition to ordinary single failures of, say, hardware components, physical 
systems are vulnerable to force majeure or disaster events, like earthquakes, fi res, and 
fl oods, which can simultaneously impact multiple ingredients or components. This is 
illustrated in Figure  14.2 , repeated from Figure  3.4 . All of these ingredients are subject 
to risks, which can compromise ingredient availability, thereby impacting end user 
service.   

 Traditionally, enterprises broadly factored accountability for failures and outages 
into three broad buckets: product attributable, customer (or enterprise or user) attribut-
able, and externally attributable. Figure  14.3  (repeated from Figure  4.1 ) visualizes the 
traditional factorization of accountability by ingredients. Accountability for each ingre-
dient maps across the three traditional categories as follows:

    •       Product suppliers  are primarily accountable for the hardware and software they 
supply, and the ability of that hardware and software to interwork with other 
systems via defi ned application protocol payloads.  

   •       Customers  are accountable primarily for the physical security, temperature, 
humidity, and other environmental characteristics of the facility where the hard-
ware is installed, as well as for providing necessary electrical power and IP 
network connectivity. Customers are also responsible for their application, user, 
and confi guration data, as well as for the operation policies and human staff.  

     Figure 14.2.     Eight - Ingredient Plus Data Plus Disaster (8i    +    2d) Model.  
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   •       External : Data centers are inherently vulnerable to force majeure and disaster 
events like earthquakes, tornadoes, fi res, and so on. As these risks are not appro-
priately attributed to either the customer or the supplier, they are placed in this 
 “ external ”  attributability category.      

 Cloud computing fundamentally changes the accountability model because there is no 
longer a monolithic customer who buys and operates equipment. Instead, there is a 
cloud service provider who owns and operates cloud computing facilities (analogous 
to a landlord), and a cloud consumer who leases those computing facilities (analogous 
to a rental tenant). Thus, the accountabilities that were solely the responsibility of the 
 “ customer ”  in the traditional model must now be split between the cloud consumer and 
the cloud service provider. The exact division is determined by the particular cloud 
service model (i.e., infrastructure as a service [IaaS], platform as a service [PaaS], and 
software as a service [SaaS]); Figure  14.4  (repeated from Figure  10.7 ) gives a typical 
breakdown of accountabilities.

    •       Cloud service providers  are responsible for reliable operation of the compute, 
storage, and networking equipment (including load balancers and security appli-
ances) in their data centers which host their cloud service offering. Along with 
responsibility for the hardware itself and the base software, the cloud service 
provider has responsibility for providing electrical power, highly reliable IP 
networking, and maintaining a physically secure data center with acceptable 
temperature, humidity, and other environmental conditions. The cloud service 
provider is also responsible for the human maintenance staff, contractors, 
and suppliers who support that data center, as well as the operational policies 

     Figure 14.3.     Traditional Outage Attributability.  
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followed by those people when designing, operating, and maintaining the data 
center.  

   •       Software suppliers  are responsible for delivering and supporting the software 
running on the virtualized platform. Note that there are often many software 
suppliers contributing different platform and application software components, 
and some of the software may even be supplied by the cloud service provider, 
the cloud consumer, or both.  

   •       The cloud consumer  is the enterprise (or individual) who pays for the cloud 
services. The cloud consumer is responsible for their own enterprise or appli-
cation data (e.g., user records and inventory data) and service confi guration, such 
as fi rewall settings and load balancer policies. The cloud consumer is also respon-
sible for the staff that provisions their data (e.g., adding users and manipulat-
ing enterprise data) and operates the application. In addition, the cloud consumer 
is responsible for assuring that force majeure risks are adequately mitigated 
via service continuity and disaster recovery planning, as well as georedun-
dancy. While cloud service providers offer the services necessary to construct 
robust georedundancy confi gurations and disaster recovery plans, the cloud 
consumer has primary responsibility for business continuity planning of their 
service and data.       

   14.3    FACTORING SERVICE DOWNTIME 

 The outage accountability model of cloud computing can also be factored based on 
process areas as shown in Figure  14.5  (repeated from Figure  4.5 ). The risks to software, 

     Figure 14.4.     Sample Outage Accountability Model for Cloud Computing.  
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hardware, and payload ingredients are primarily managed and mitigated via the design 
for reliability and quality processes of the equipment and application suppliers. The 
risks to power, environment, and IP networking infrastructure are primarily considered 
in the context of data center best practices and standards like  [Uptime]  and  [TIA942] . 
The data, human, and policy ingredients are addressed via IT service management best 
practices and standards like ITIL, ISO/IEC 20000, and COBIT. And the risk of force 
majeure events is mitigated via business continuity and disaster recovery plans. While 
IT service management generally considers service continuity, it is useful to explicitly 
consider disaster recovery because it presents different risks and challenges to high 
availability mechanisms. Note that it is essential that cloud consumers and cloud service 
providers have aligned and interlocked their roles and responsibilities for IT service 
management and disaster recovery to assure that service is rapidly restored after any 
failure or disruption event.   

 A side benefi t of the risk by process area analysis of Figure  14.5  is that is offers a 
simple and actionable factorization of cloud downtime into four categories:

    •       Product - attributable downtime  for events primarily attributable to application 
software and virtualized compute and storage hardware. Traditional service avail-
ability claims (e.g.,  “ fi ve 9 ’ s ” ) referred exclusively to product attributable service 
downtime.  

   •       Data center - attributable downtime  for events primarily attributable to power, 
environment, and IP networking facilities and infrastructure. Note that one 
should explicitly decide if IP equipment, like routers, end - of - row and top - of - 
rack switches, security appliances, and load balancers, are lumped into data 
center - attributable or product - attributable downtime categories. Each of these 
components can be reasonably covered in either product - attributable or data 

     Figure 14.5.     Outage Responsibilities of Cloud by Process.  
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center - attributable category; the key is to make sure that these crucial elements 
are not overlooked.  

   •       IT service management - attributable downtime  for downtime primarily attrib-
utable to elastic growth and degrowth, software release management, and for 
downtime prolonged by ineffective problem/event/incident management 
procedures.  

   •       Disaster attributable downtime : Force majeure events that destroy a data center 
or render it inaccessible or unavailable are fortunately so rare that it is inappro-
priate to estimate an average annualized service downtime attributable to disas-
ters. Instead, rare disaster events are expected to be recovered within the target 
RTO and lose no more data than the target RPO.    

 The best practice to manage application service availability is to create a feasible 
downtime budget and manage architecture, design, testing, deployment, and operations 
to maximize the likelihood that the budget is not exceeded. Table  14.1  (repeated from 
Table  10.4 ) shows how a sample  “ fi ve 9 ’ s ”  budget for a traditional application morphs 
for virtualized deployment and for cloud deployment. The key insights are of this 
sample budget are:

    •      Software downtime is likely to remain essentially the same across all three 
deployment options.  

   •      Hardware related downtime changes in virtualized and cloud deployments; it 
does not vanish.  

   •      Product attributable planned and procedural or IT service management downtime 
remains a signifi cant contributor to service downtime. Consumer - attributable IT 
service management downtime (e.g., due to human provisioning mistakes) is in 
addition to this downtime budget allocation.       

   14.4    SERVICE AVAILABILITY MEASUREMENT POINTS 

 To analyze and understand the reliability and availability of cloud computing, the 
authors recommend considering four measurement points (MPs) illustrated in Figure 
 14.6  (repeated from Figure  10.10 ):

    •      Component Instance Level (MP 1) .      Solutions are built from instances of various 
components like fi rewalls, load balancers, application servers, and databases 
that together deliver valuable services to end users. A fundamental MP is of 
the service delivered by each component instance. If an individual component 
instance is protected by a redundant component instance, then it is best to 
consider the overall availability of component service across the pool of 
instances.  

   •      Primary Data Center Level (MP 2) .      An ensemble of component instances will 
generally be arranged in one or more data centers and integrated to offer services 
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  TABLE 14.1.    Evolution of Sample Downtime Budgets 

   Sample  “ Five 9 ’ s ”  Product or Application Attributable Downtime Budgets  
   Annual 
Down 

Minutes     %  
   Traditional 
Deployment     Virtualized Deployment     Cloud Deployment  

  Hardware related — target: 30 seconds    =    0 minute 30 seconds  
   Hardware failure 
downtime  — service 
downtime triggered 
by hardware 
failures.  

   Virtualized hardware 
platform downtime  —
 service downtime 
attributed to 
virtualized hardware 
resources (e.g., virtual 
CPU, memory, disk, 
and networking).  

   Application downtime 
recovering from 
ordinary XaaS 
failures  — service 
downtime for 
application to detect 
and recover from 
ordinary XaaS 
platform failures.  

  0.50    10  

  Software attributable — target: 225 seconds    =    3 minute 45 seconds  
   Application software failures  — service downtime due to software failures of 
platform and/or application software.  

  3.75    71  

  Procedural and maintenance attributable — target: 60 seconds    =    1 minute 0 second  
   Successful scheduled 
activities  — service 
downtime  “ by 
design ”  for 
successful upgrade, 
update, retrofi t, 
hardware growth 
and other scheduled 
or planned 
maintenance 
activities.  

   Application software -
 related planned and 
procedural 
downtime  — product -
 attributable service 
downtime attributed to 
successful and 
unsuccessful planned 
and procedural 
activities associated 
with application 
software.  

   Product - attributable 
cloud maintenance 
activities  — chargeable 
service downtime for: 
     •      elastic capacity 

growth and 
degrowth;  

   •      software upgrade, 
update, retrofi t, and 
patching;  

   •      live migration; and  
   •      other IT service 

management 
activities.     

  1.00    19  

   Unsuccessful 
procedural 
activities  — service 
downtime attributed 
to unsuccessful or 
botched maintenance 
activities, such as 
upgrade, update, 
retrofi t, hardware 
growth, and 
provisioning.  

   Virtualized platform -
 related planned and 
procedural 
downtime  — product -
 attributable service 
downtime attributed to 
successful and 
unsuccessful planned 
and procedural 
activities associated 
with the virtualized 
hardware platform.  

          Total    5.25      
          Availability    99.999%      
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to end users. MP 2 captures the overall performance of the solution services 
offered by the ensemble of component instances in a particular (nominally 
primary) data center, as well as the data center itself and the impact of IT service 
management.  

   •      Aggregate Service Level (MP 3) .      Often solutions are georedundantly deployed 
across several data centers so that one data center can recover service for users 
of another data center when a disaster or catastrophic failure renders service from 
the users ’  primary data center unavailable. MP 3 captures the overall aggregate 
service performance across a pool of data centers, excluding user service impair-
ments from WAN and access network equipment and facilities.  

   •      End - to - End Service Level (MP 4) .      End users of solution services are rarely 
located in the data center hosting the ensemble of component instances imple-
menting the solution. Instead, end users access solution services via some client 
device like a smartphone, laptop, tablet, set top box, etc., across a wireless or 
wireline access network and wide area network to communicate with the data 
center hosting the component instances implementing the service. These access, 
backhaul and wide area networking equipment and facilities are subject to fail-
ures and impairments that can compromise the users ’  quality of experience. MP 
4 integrates the impact of these access, backhaul and WAN considerations along 
with the aggregate service of MP 3.      

 Application suppliers, cloud consumers, and cloud service providers share account-
abilities for component instance availability (MP 1), primary data center availability 
(MP 2), and aggregate service level availability (MP 3). End - to - end service availability 
(MP 4) introduces accountability for numerous communications service providers and 
others who are often outside of the control of the cloud consumer and the cloud service 
provider. Thus, one must carefully consider the service MPs when setting service level 
expectations and accountabilities.  

     Figure 14.6.      Measurement Point s ( MP s) 1, 2, 3, and 4.  
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   14.5    CLOUD CAPACITY AND ELASTICITY CONSIDERATIONS 

 Historically, enterprises have had to predict the expected traffi c levels for an application 
months in advance so the organization could acquire and install suffi cient hardware 
and software resources, arrange for suffi cient networking bandwidth and intermediate 
systems (e.g., security appliances and load balancers), as well as install and confi gure 
application software and data to assure suffi cient service capacity was available to 
serve the anticipated load. Deploying all of these resources often entailed great capital 
and operating expenses, and carried a huge fi nancial risk for the enterprise. If the 
enterprise was too pessimistic in their predictions, then users would saturate the system 
and traffi c would be turned away, thereby impacting customer goodwill and perhaps 
revenue; and if the enterprise was too optimistic, then all of the excess capital expense 
and operating expense for the unneeded capacity would be carried forward by the 
enterprise, possibly for years, because it was hard to release and reuse resources that 
were no longer needed. 

 The essential cloud computing characteristic of rapid elasticity can eliminate virtu-
ally all capacity planning risks and capacity planning work itself because cloud comput-
ing enables cloud consumers to request or release resources on - the - fl y, and then pay 
for the resources actually used. As a result, cloud expenses can track with the actual 
workload, rather than being a function of installed capacity (which was driven by 
capacity plans completed months earlier). Note that rapid elasticity makes resources 
available promptly (e.g., in hours), but not instantly (e.g., in seconds), so rapid elasticity 
is not an alternative to redundancy for high availability, and it does not eliminate the 
need for overload control mechanisms. Careful application monitoring and manage-
ment should minimize the frequency of overload events (and associated service reli-
ability impact) by elastically growing online service capacity ahead of offered load. 
Naturally, the complexity of rapid elasticity introduces a variety of reliability risks, 
and these were considered in Chapter  7 . Growing — or degrowing — the online service 
capacity of an application or solution requires careful coordination of added (or deleted) 
compute resources, storage resources, network bandwidth, load balancer confi gura-
tions, and application software and confi guration. Automating these tasks so growth or 
degrowth operations complete rapidly and reliably is the purpose of service orchestra-
tion. Service orchestration and the reliability risks of orchestration were considered in 
Chapter  8 .  

   14.6    MAXIMIZING SERVICE AVAILABILITY 

 While cloud computing slightly increases the risk of critical failures due to the added 
complexity of virtualization, rapid elasticity and increased resource sharing, as well as 
the associated IT service management risks, cloud computing does present opportuni-
ties to mitigate both the preexisting and new reliability risks to potentially offer higher 
service availability than traditional deployment scenarios. Consider the opportunities 
to reduce service downtime in each of the four general categories of service downtime 
as described in the next sections. 
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   14.6.1    Reducing Product Attributable Downtime 

 Virtualization should have a minimal impact on failure rates: reliability of application 
software executed in virtual machines should be comparable with reliability of execu-
tion in native environments, and the failure rate of the underlying physical hardware 
should be nominally the same when hosting a virtualization manager and application 
as when executing an application natively (i.e., without virtualization). To assure com-
parable service availability of applications in virtualized confi gurations, it is important 
that failure detection and recovery times of virtualized deployments be comparable 
with native deployment. While virtualized implementations of traditional redundancy 
strategies (e.g., active/standby, active/active) should offer comparable performance 
to native (nonvirtualized) deployments, virtualization offers some new redundancy 
options, such as activating paused or snapshot images, as well as enabling different 
redundancy models. For example, traditionally one might assume a 4 - hour  mean time 
to repair  ( MTTR ) for a hardware failure of the server natively hosting a critical applica-
tion, but virtualization can support (offl ine) migration of an impacted application from 
failed hardware to an operational hardware platform that has suffi cient spare capacity 
in far less time, thus improving application service availability by shortening the effec-
tive (i.e.,  “ virtualized ” ) hardware MTTR. A detailed analysis of the software reliability 
risks and high availability options of virtualization are considered in Chapter  5 , the 
hardware reliability risks of virtualization and their impact on service availability are 
discussed in Chapter  6 , and virtualization ’ s impact on service transition activities is 
addressed in Section  4.5 .  

   14.6.2    Reducing Data Center Attributable Downtime 

 Cloud computing makes it easy for cloud consumers to shop around to pick an IaaS or 
PaaS service provider who offers the desired data center performance at the lowest total 
cost for the cloud consumer.  

   14.6.3    Reducing  IT  Service Management Downtime 

 Reduction of downtime associated with service management activities, such as software 
upgrade or patch, are discussed in Section  11.3 ,  “ IT Service Management Consider-
ations. ”  In summary, service transition tools and procedures should have the following 
requirements:

    •      Automation (e.g., service orchestration) to replace manual procedures and make 
use of mechanisms such as live migration when appropriate.  

   •      Ability to fulfi ll the reliability requirements associated with the service transition 
activity (e.g.,  x  seconds of service downtime).  

   •      Use of the  Open Virtualization Format  ( OVF ) or similar to provide confi guration 
information so that it can be clearly defi ned and validated by the tools.  

   •      Ability to create and confi gure an updated instance of the application while 
running the old version, and to seamlessly stop the old version and activate the 
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new version once is ready. This may be performed on the same server or on a 
different server dependent upon the type of maintenance activity and the avail-
ability of resources.  

   •      Clear, accurate documentation and training is provided for those managing the 
service transition activities.  

   •      Thorough testing of the maintenance procedures must be performed to ensure 
the procedures meet the reliability requirements for service transition activities.     

   14.6.4    Reducing Disaster Recovery Downtime 

 Geographic distribution is a common characteristic of cloud computing, but geo-
graphic distribution does not automatically mean geographic redundancy and support 
for disaster recovery. Leveraging geographic distribution to create geographically dis-
tributed redundancy (a.k.a., georedundancy) for disaster recovery requires careful plan-
ning, confi guration, and testing to assure that user service can be recovered fast enough 
(i.e., the recovery time objective or RTO) with acceptably fresh application data 
following a disaster (i.e., the recovery point objective or RPO) and to meet the needs 
of the business. Disaster recovery time objectives are typically measured in hours or 
days, and thus disaster recovery mechanisms alone generally offer limited mitigation 
for catastrophic failure events. Appropriately engineered applications and solutions 
can leverage spare online capacity in other data centers to mitigate catastrophic 
failure events by rapidly detecting failures and redirecting workloads to the spare 
online capacity much more quickly than the traditional (manual) disaster recovery 
plans. Geographic distribution, georedundancy and disaster recovery are considered in 
Chapter  9 .  

   14.6.5    Optimal Cloud Service Availability 

 It is tempting to assume that given the vast pool of cloud computing resources avail-
able, service downtime should vanish because somewhere there is an instance of the 
application that is available and capable of providing service for each user. While there 
may be one or more instances of the target application available for service somewhere 
in the cloud, it is not practical to achieve 100% service availability for reasons 
including:

    •      Noninstantaneous Failure Detection .      After clicking a button or icon, users gen-
erally wait for an operation to complete. For certain types of failures, one must 
simply wait for the request to time out to determine that the application is not 
available for service.  

   •      Noninstantaneous Service Recovery .      Recovering authenticated services often 
requires reauthenticating the user, with the redundant server or application 
instance entailing security credentials to be exchanged and validated. Recovering 
session - oriented and stateful services requires rebuilding or recreating context 
to minimize user visible service impact. Both of these activities take time, during 
which service is unavailable to the impacted user.  
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   •      Noninstantaneous Access to the User ’ s Data .      User service often requires running 
software, application data, and user data. For example, while a running e - mail 
server instance is necessary for e - mail service, users also expect access to their 
personal inbox data to be accessible via that e - mail server. Thus, service recovery 
involves restoring access to the user ’ s individual data, and that data may not be 
 “ instantly ”  available to the alternate server instance.    

 Cloud computing makes it feasible to consider redundant compute arrangements, such 
as where a client application maintains authenticated sessions with two or more applica-
tion instances, sends each individual request to each of those applications instances 
simultaneously, and uses the fi rst correct response, thereby mitigating at least some 
application downtime. Unfortunately, determining the fi rst  “ correct ”  response may 
not be trivial, and assuring consistency and correctness of data across a pool of servers 
operating in parallel can be challenging. While it is fi ne to have any DNS server instance 
return an IP address for a particular domain name independent of all other DNS server 
instances, one does not want multiple instances of your bank ’ s online application 
to permit independent application instances to make simultaneous and overlapping 
withdrawals from your account to unknowingly overdraft your bank account. It is 
certainly feasible to leverage new redundancy options offered by cloud computing to 
boost service availability, but maximizing these potential service availability benefi ts 
will probably require enhancements to service architectures, application protocols, and 
application and client software.   

   14.7    RELIABILITY DILIGENCE 

 Highly reliable and highly available services can be implemented and deployed through 
appropriate reliability diligence. The authors presented a cloud solution design for reli-
ability process in Chapter  13 , which is visualized in Figure  14.7  (which is the same as 
Figure  13.1 ). Many readers will recognize close similarities with the service strategy, 
service design, service transition, and continual service improvement activities of IT 
service management processes, like ITIL (service operation is purely an IT service 
operations activity and thus is not covered by design for reliability diligence). Regard-
less of whether reliability diligence is worked in the context of an R & D activity, in an 
IT service management activity or some other workfl ow process, the key activities of 
Figure  14.7  and Chapter  13  should be addressed:

    •      Capture customers ’  service reliability and availability expectations in 
requirements.  

   •      Perform analysis and modeling to assure it is feasible and likely that the require-
ments can be met with the target architecture, feature set, and proposed project 
plan.  

   •      Assure that appropriate design for reliability diligence is completed on solution 
elements to assure that those elements will meet the solution ’ s requirements. 
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Chapter  12  reviewed the recommended design for reliability diligence for virtual-
ized applications.  

   •      Test the solution to assure that service reliability, latency, quality, and stability 
are acceptable, and that robustness and recovery mechanisms function properly 
and meet all corresponding reliability requirements.  

   •      Track and analyze fi eld performance to drive continual service improvement, and 
to validate and calibrate predictive models to be used in future solution releases.       

   14.8    CONCLUDING REMARKS 

 Cloud computing is a compelling business model for delivering information services; 
many new applications will be explicitly developed for cloud deployment, and many 
preexisting applications will evolve to cloud deployment. The dynamic and fl exible 
characteristics of cloud computing provide the basis for highly reliable, always avail-
able services. The careful analysis of the reliability and availability risks and architec-
tural opportunities presented in this book offers guidance on how to develop cloud - based 
solutions that meet or exceed service reliability and availability requirements of tradi-
tional deployments.    
 

 

 

     Figure 14.7.     Design for Reliability of Cloud - Based Solutions.  
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      3G   Third - generation wireless network (e.g., UMTS)  

  4G   Fourth - generation wireless network (i.e., LTE)  

  ACID   Atomicity, consistency, isolation, and durability  

  API   Application programming interface  

  APM   Application performance management  

  ARP   Address resolution protocol  

  BASE   Basically available, soft state, eventual consistency  

  BRAS   Broadband remote access server  

  CapEx   Capital expense  

  COTS   Commercial off the shelf  

  CPU   Central processing unit  

  CSA   Cloud Security Alliance  

  CSP   Cloud service provider  

  DAS   Direct attached storage  

  DDoS   Distributed denial of service (attack)  

  DfR   Design for reliability  

  DHCP   Dynamic host confi guration protocol  

  DMTF   Distributed Management Task Force  

  DNS   Domain name system  

  DoS   Denial of service (attack)  

  DR   Disaster recovery  

  DSL   Digital subscriber loop, a copper access technology  

  DSLAM   Digital subscriber loop access module  

  EOR   End - of - row Ethernet switch  

  FAA   U.S. Federal Aviation Administration  

  FIT   Failures in time (10 9  hours)  

  FMEA   Failure mode effects analysis  
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  FRU   Field replaceable unit (hardware)  

  GPON   Gigabit passive optical networking, an optical access technology  

  GR   Geographic redundancy  

  HFI   Hardware fault insertion  

  IaaS   Infrastructure as a service  

  IC   Integrated circuit  

  ICT   Information and communication technology  

  IETF   Internet Engineering Task Force  

  IP   Internet protocol  

  IS   Information systems  

  iSCSI   Internet Small Computer System Interface  

  ISP   Internet service provider  

  IT   Information technology  

  ITIL   Information Technology Infrastructure Library  

  ITSCM   IT service continuity management  

  ITSM   Information technology service management  

  ITU   International Telecommunications Union  

  KPI   Key performance indicator  

  KQI   Key quality indicator  

  LAN   Local area network  

  LTE   Long - term evolution, a fourth - generation wireless networking standard  

  MOP   Methods of procedure  

  MOS   Mean opinion score  

  MP   Measurement point  

  MTBCF   Mean time between critical failures  

  MTBF   Mean time between failures  

  MTTR   Mean time to repair   

  MTTRS   Mean time to restore service   

  NAS   Network attached storage  

  NIC   Network interface card  

  NIST   U.S. National Institute of Standards and Technology  

  OAM   Operations, administration, and maintenance  

  OAMP   Operations, administration, maintenance, and provisioning  

  ODCA   Open Data Center Alliance  

  OpEx   Operating expense  

  OS   Operating system  

  OVF   Open Virtualization Format  
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  PaaS   Platform as a service  

  PC   Personal computer  

  RAID   Redundant array of inexpensive (or independent) disks  

  RBD   Reliability block diagram  

  RPO   Recovery point objective  

  RTO   Recovery time objective  

  RTP   Real time protocol  

  SaaS   Software as a service  

  SAN   Storage area network  

  SIP   Session initiation protocol  

  SLA   Service - level agreement  

  SLR   Service - level requirement  

  SPOF   Single point of failure  

  TIA   Telecommunications Industry Association  

  TOR   Top - of - rack Ethernet switch  

  VBF   Vital business function  

  VLAN   Virtual local area network (LAN)  

  VM   Virtual machine instance  

  VMM   Virtual machine manager  

  VNIC   Virtual network interface card  

  VPN   Virtual private network  

  WAN   Wide area network  

  XaaS   Refers to one or more of: software as a service, platform as a service, 
and infrastructure as a service.          
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