Tutorial at the World Wide Web conference Hyderabad, India, 2011

http://snap.stanford.edu/proj/socmedia-www

Analytics & Predictive Models for Social Media: <u>Part 1:</u> Information flow

Jure Leskovec Stanford University

About the tutorial: Social Media

- Goal: Introduce methods and algorithms for Social Media Analytics
- Tutorial has two parts:
 - Part 1: Information Flow
 - How do we capture and model the flow of information through networks to:
 - Predict information attention/popularity
 - Detect information big stories before they happen
 - Part 2: Rich Interactions
 - How do we go beyond "link"/"no-link":
 - Predicting future links and their strengths
 - Separating friends from foes

Social Media: Social Content

- Media designed to be disseminated through Social interaction
- Web is no longer a static library that people passively browse
- Web is a place where people:
 - Consume and create content
 - Interact with other people

Social Media: Examples

- Places where people consume, produce and share content:
 - Internet forums
 - Blogs
 - Social networks
 - Microblogging: Twitter
 - Wikis
 - Podcasts, Slide sharing, Bookmark sharing, Product reviews, Comments, ...
- Facebook traffic tops Google (for USA)
 - March 2010: FB > 7% of US traffic

http://money.cnn.com/2010/03/16/technology/facebook most visited

Social Media: Opportunities

- Any user can share and contribute content, express opinions, link to others
- This means: Web (Social Media) captures the pulse of humanity!
 - Can directly study opinions and behaviors of millions of users to gain insights into:
 - Human behavior
 - Marketing analytics, product sentiment

Social Media: Challenges

Traditionally:

- Web is static library
- Search engines crawl and index the Web
- Users issue queries to find what they want

Today:

- On-line information reaches us in small increments from real-time sources and through social networks
- How should this change our understanding of information, and of the role of networks?

Social Media: Challenges

- Web as universal library vs.
 Web as current awareness medium
 - Real-time information flow in social networks
 - Real-time search:
 - "Tell me about X" vs. "Tell me what's hot now"
 - Predictive models of human interactions
 - We need finer resolution than presence/absence of a link

Social Media: Rich & Big Data

Rich and big data:

- Billions users, billions contents
- Textual, Multimedia (image, videos, etc.)
- Billions of connections
- Behaviors, preferences, trends...

Data is open and easy to access

- It's easy to get data from Social Media
- Datasets
- Developers APIs
- Spidering the Web

For the list of datasets see tutorial website: http://snap.stanford.edu/proj/socmedia-www and also: http://snap.stanford.edu/data

Social Media Datasets

Social Tagging:

- CiteULike, Bibsonomy, MovieLens, Delicious, Flickr, Last.FM...
- http://kmi.tugraz.at/staff/markus/datasets/
- Yahoo! Firehose
 - 750K ratings/day, 8K reviews/day, 150K comments/day, status updates, Flickr, Delicious...
 - <u>http://developer.yahoo.net/blog/archives/2010/04/yahoo_updates_firehose.html</u>
- MySpace data (real-time data, multimedia content, ...)
 - http://blog.infochimps.org/2010/03/12/announcing-bulk-redistribution-ofmyspace-data/
- Spinn3r Blog Dataset, JDPA Sentiment Corpus
 - <u>http://www.icwsm.org/data/</u>

Tutorial Outline

Part 1: Information flow in networks

- <u>1.1: Data collection: How to track the flow?</u>
- 1.2: Correcting for missing data
- 1.3: Modeling and predicting the flow
- 1.4: Infer networks of information flow

Part 2: Rich interactions

Part 1 of the Tutorial: Overview

Information flow through Social Media

 Analyzing underlying mechanisms for the real-time spread of information through on-line networks

Motivating questions:

- How do messages spread through social networks?
- How to predict the spread of information?
- How to identify networks over which the messages spread?

Social Media Data: Spinn3r

- Spinn3r Dataset: <u>http://spinn3r.com</u>
 - 30 million articles/day (50GB of data)
 - 20,000 news sources + millions blogs and forums
 - And some Tweets and public Facebook posts
- What are basic "units" of information?
 - Pieces of information that propagate between the nodes (users, media sites, ...)
 - phrases, quotes, messages, links, tags

Tracing Information Flow

- Would like to track units of information that:
 - correspond to pieces of information:
 - events, articles, ...
 - vary over the order of days,
 - and can be handled at large scale

Ideas:

- (1) Cascading links to articles
- Textual fragments that travel relatively unchanged:
 - (2) URLs and hashtags on Twitter
 - (3) Phrases inside quotes: "…"

Tracing Information (1): Hyperlinks

 Bloggers write posts and refer (link) to other posts and the information propagates

[SDM '07]

Cascading hyperlinks

Identify cascades – graphs induced by a time ordered propagation of information

Cascade Shapes

- Cascade shapes (ordered by decreasing frequency)
 10 million posts and 350,000 cascades

 - Cascades are mainly stars (trees)
 - Interesting relation between the cascade frequency and structure

Tracing hyperlinks: Pros/Cons

Advantages:

- Unambiguous, precise and explicit way to trace information flow
- We obtain both the times as well as the trace (graph) of information flow

Caveats:

- Not all links transmit information:
 - Navigational links, templates, adds
- Many links are missing:
 - Mainstream media sites do not create links
 - Bloggers "forget" to link the sournce

Tracing Information (2): Twitter

Twitter information network:

- Each user generates a stream of tweets
- Users then subscribe to "follow" the streams of others

3 ways to track information flow in Twitter:

- (1) Trace the spread a "hashtag" over the network
- (2) Trace the spread of a particular URL
- (3) Re-tweets

Tracing information on Twitter (1)

• (1) Tracing hashtags:

- Users annotate tweets with short tags
- Tags naturally emerge from the community

Realtime results for Mubarak

- Given the Twitter network and time stamped posts
 - If user A used hashtag #egypt at t₁ and user B follows A and B first used the same hashtag at some later time this means A propagated information to B

Tracing information on Twitter (2)

• (2) Tracing URLs:

- Many tweets contain shortened (hashed) URLs
 - Short-URLs are "personalized"
 - If two users shorten the same URL it will shorten to different strings

Realtime results for Mubarak

Refka_25 RT @fluutekies: #Obama [polite mode off]: #Mubarak is an old, extemely stubborn mad man, who needs a psychiatrist to be convinced to leave. #jan25 #egypt less than 20 seconds ago via web

itmustbeacamel RT @carmelva: RT @SarahZaaimi: a twitter user: Are they any anti-mubarak apps available for the iphone? #Egypt #jan25 less than 20 seconds ago via TweetDeck

Given the Twitter network and time stamped posts

If user A used URL₁ at t₁ and B follows A and B used the same URL later then A propagated information to B

Tracing information on Twitter (3)

(3) Re-tweets:

- Explicit information diffusion mechanism on Twitter
- B sees A's tweet and "forwards" it to its follower by re-tweeting
- By following re-tweet cascades we establish the information flow

Tracing Information (2): Twitter

Advantages:

- Large network, relatively easy to collect data
 - Caveat: If data is incomplete cascades break into pieces!
- Many different diffusion mechanisms

Caveats:

- Not clear whether hashtags really diffuse
- Due to "personalization" easier to argue URLs diffuse
- Problem with all is that we do not know the "influencer"

t₁

Д

follows

Who "influenced" C?

B

Side note: Twitter data

Twitter network:

Kwak et al.: <u>http://an.kaist.ac.kr/traces/WWW2010.html</u>

Tweets:

- 500 million tweets over 7 months
- Go to <u>http://snap.stanford.edu/data/twitter7.html</u> and "view source" and you will find the links to the data commented out ^(C)

Tracing Information (3): Memes

- Meme: A unit of cultural inheritance
- Extract textual fragments that travel relatively unchanged, through many articles:
 - Look for phrases inside quotes: "..."
 - About 1.25 quotes per document in Spinn3r data
 - Why it works?
 - Quotes...
 - are integral parts of journalistic practices
 - tend to follow iterations of a story as it evolves
 - are attributed to individuals and have time and location

[KDD '09]

Challenge: Quotes Mutate

imperfect enough that he's palling around with terrorists who would target their own country.

Finding Mutational Variants

- Goal: Find mutational variants of a quote
- Form approximate quote inclusion graph
 - Shorter quote is approximate substring of a longer one
- Objective: In DAG

(approx. quote inclusion), delete min total edge weight s.t. each connected component has a single "sink"

Finding Mutational Variants

- DAG-partitioning is NP-hard but heuristics are effective:
 - Observation: enough to know node's parent to reconstruct optimal solution
 - Heuristic:

Proceed top down and assign a node (keep a single edge) to the strongest cluster

Insights: Quotes reveal pulse of media

Volume over time of top 50 largest total volume quote clusters Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial)

Insights: When sites mention quotes?

Can classify individual sources by their typical timing relative to the peak aggregate intensity

Rank | Lag [h] | Reported | Site

Professional blogs	1 2 4 5 6 7 8 9 10	-26.5 -23 -19.5 -18 -17 -16 -15 -15 -15 -14.5	42 33 56 73 49 89 31 32 34	hotair.com talkingpointsmemo.com politicalticker.blogs.cnn.com huffingtonpost.com digg.com breitbart.com thepoliticalcarnival.blogspot.com talkleft.com dailykos.com
News media	30	-11	32	uk.reuters.com
	34	-11	72	cnn.com
	40	-10.5	78	washingtonpost.com
	48	-10	53	online.wsj.com
	49	-10	54	ap.org

Insights: Quotes on Great depression

- Pew's project for Excellence in journalism
- Media coverage of the current economic crisis

Tutorial Outline

Part 1: Information flow in networks

- 1.1: Data collection: How to track the flow?
- <u>1.2: Correcting for missing data</u>
- 1.3: Modeling and predicting the flow
- 1.4: Detecting/maximizing influence

Part 2: Rich interactions

Information Diffusion Cascades

- Users are nodes in a social network.
- We know the network
- We focus on some action users have performed (e.g., tweeted about "mubarak")
- We may or may not know which node influenced which other node

Information Diffusion Cascades

What happens with missing data?

Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial)

Missing Data Distorts Cascades (1)

Missing Data Distorts Cascades (2)

Missing Data Distorts Cascades (3)

Problem Statement

- Goal: Find properties X of the complete cascade C
- We only have access to cascade C' that is C with missing data
 - Missing data regime: Each node of C is missing independently with probability p
- Properties X' of C' are inaccurate (X ≠ X')

Methodology

k-Tree Model of Cascades

Properties of k-trees with missing data

Relatively simple to reason about
 Can calculate an exact expressions for many different properties of the k-tree

Example: # of Connected Components

Number of connected components as a function of k-tree model parameters (*b*,*h*,*k*) and missing data rate *p*: $\#CC = \frac{p^2}{b-1} \left(\frac{b(1-b^k)}{b-1} + kb^{h+1} \right)$

Properties of k-trees

- Derive equations linking k-tree parameters with a cascade properties:
 - # of nodes
 - # of edges
 - # of connected components =
 - # of isolated nodes
 - # of leaves

3/29/2011

- Average node degree
- Out-degree of non-leaves
- Size of the largest connected component
- For each property find an "equation" that links model parameters (p,b,h,k) to the value

$$\frac{p^2}{b-1} \left(\frac{b(1-b^k)}{b-1} + kb^{h+1} \right)$$

Methodology Overview

Estimating k-tree Parameters

Methodology Overview

Experiments

- Are k-trees a good model for cascades?
- How well can we correct for missing data?
- Do parameters of the model correspond to real cascade properties?

Data Sets

Twitter:

- Network of 72 million nodes and 2 billion edges
- Complete set of 350 million tweets over 6 months
- Influence cascade: URL retweet cascades
- Network cascade: Pretend we do not know URL of which friend did you forward

Sprinn3r blogs:

- English blogosphere posts over 2 months
- Influence cascades: Cascades formed by links between the blog posts

Is k-tree a good cascade model?

Yes! Curve of the model matches the empirically measured values of a real cascade.

Can Correct for Missing Data?

Do significantly better than the observed uncorrected values!

Can Correct for Missing Data?

Our method is most effective when more than 20% of the data is missing
Works well even with 90% of the data missing

Tutorial Outline

Part 1: Information flow in networks

- 1.1: Data collection: How to track the flow?
- 1.2: Correcting for missing data
- 1.3: Modeling and predicting the flow
- 1.4: Infer networks of information flow

[WSDM `11]

Patterns of Information Attention

- Q: What are temporal patterns of information attention?
 - Item i: Piece of information (e.g., quote, url, hashtag)
 - Volume x_i(t): # of times i was mentioned at time t
 - Volume = number of mentions = attention = popularity
 - Q: Typical classes of shapes of x_i(t)

Discovering Attention Patterns

- Given: Volume of an item over time
- <u>Goal</u>: Want to discover types of shapes of volume time series

Clustering Temporal Signatures

<u>Goal:</u> Cluster time series & find cluster centers
Time series distance function needs to be:

Patterns of Attention

Quotes: 1 year, 172M docs, 343M quotes Same 6 shapes for Twitter: 580M tweets, 8M #tags

3/29/2011

Analysis of Attention Patterns

Predicting Attention

How much attention will information get?

- Who reports the information and when?
 - Ih: Gizmodo, Engadget, Wired
 - 2h: Reuters, Associated Press
 - 3h: New York Times, CNN
 - How many will mention the info at time 4, 5,...?

Motivating question:

- If NYT mentions info at time t
- How many subsequent mentions of the info will this generate at time t+1, t+2, ...?

volume

noi

time

Predicting Information Diffusion

Goal:

Predict future attention (number of mentions)
Traditional view:

- In a network "infected" nodes spread info to their neighbors
- Problem:

- The network may be unknown
- Idea: Predict the future attention based on which nodes got "infected" in the past

Linear Influence Model

- Idea: Predict the volume based on who got infected in the past
- Solution: Linear Influence Model (LIM)
 - Assume no network
 - Model the global influence of each node
 - Predict future volume from node influences
- Advantages:
 - No knowledge of network needed
 - Contagion can "jump" between the nodes

LIM: Strategy

t	M(t)	V(t)
1	U , W	2
2	v , x , y	3
3		?

K=1 contagion:

- V(t)...number of new infections at time t
- M(t)...set of newly infected nodes at time t
- How does LIM predict the future number of infections V(t+1)?
 - Each node u has an influence function:
 - After node u gets infected, how many other nodes tend to get infected
 - Estimate the influence function from past data
 - Predict future volume using the influence functions of nodes infected in the past

The Linear Influence Model

How to predict future volume x_i(t+1) of info i ?
Node u has an influence function I_u(q):

- I_u(q): After node u gets "infected", how many other nodes tend to get infected q hours later
 - E.g.: Influence function of CNN: How many sites say the info after they see it on CNN?
- Estimate the influence function from past data
- Predict future volume using the influence functions of nodes infected in the past

Nolume V(t)

The Linear Influence Model

LIM model:

- Volume x_i(t) of i at time t
- A_i(t) ... a set of nodes that mentioned *i* before time t

And let:

- I_u(q): influence function of u
- t_u: time when u mentioned i
- Predict future volume as a sum of influences: $x_i(t+1) = \sum_{u \in A_i(t)} I_u(t-t_u)$

Estimating Influence Functions

- After node u mentions the info, I_u(q) other mentions tend to occur q hours later
 - I_u(q) is not observable, need to estimate it
 - Make no assumption about its shape

 I_{u}

- Model $I_u(q)$ as a vector: $I_u(q) = [I_u(1), I_u(2), I_u(3), ..., I_u(L)]$
- Find I_u(q) by solving a least-squares-like problem:

$$\min_{I_{u},\forall u} \sum_{i} \sum_{t} \left(x_{i}(t+1) - \sum_{u \in A_{i}(t)} I_{u}(t-t_{u}) \right)^{2}$$

LIM: Influence Functions

Discrete non-parametric influence functions:

- Discrete time units
- $I_u(t)$... non-negative vector of length L

 $I_u(t) = [I_u(1), I_u(2), I_u(3), \dots, I_u(L)]$

How do we estimate the influence functions $I_u(t)$?

 Note: This makes no assumption about the shape of I_u(t)

LIM as matrix equation

Input data: K contagions, N nodes
Write LIM as a matrix equation:

Volume vector:

 $V_k(t)$... volume of contagion k at time t

Infection indicator matrix:

 $M_{u,k}(t) = 1$ if node *u* gets infected by contagion *k* at time *t*

Influence functions:

 $I_u(t)$... influence of node u on diffusion

Estimating influence functions

- LIM as a matrix equation: V = M * I
- Estimate influence functions:

$$\hat{\mathbf{I}} = \arg\min_{\mathbf{I} \ge 0} ||\mathbf{V} - \mathbf{M} \cdot \mathbf{I}||_2^2$$

- Solve using Non-Negative Least Squares
 - Well known, we use Reflective Newton Method
 - Time ~1 sec when *M* is 200,000 x 4,000 matrix
- Predicting future volume: Simple!
 - Given M and I, then
 - V = M* I

LIM: Performance

- Take top 1,000 quotes by the total volume:
 - Total 372,000 mentions on 16,000 websites
- Build LIM on 100 highest-volume websites
 - x_i(t) ... number of mentions across 16,000 websites
 - A_i(t) ... which of 100 sites mentioned quote i and when
- Improvement in L2-norm over 1-time lag predictor

A	A
Bursty phrases	Steady phr

	Bursty phrases	Steady phrases	Overall
AR	7.21%	8.30%	7.41%
ARMA	6.85%	8.71%	7.75%
LIM (N=100)	20.06%	6.24%	14.31%

Analysis of Influence Functions

- Influence functions give insights:
 - Q: NYT writes a post on politics, how many people tend to mention it next day?
 - A: Influence function of NYT for political phrases!
- Experimental setup:
 - 5 media types:
 - Newspapers, Pro Blogs, TVs, News agencies, Blogs
 - 6 topics:
 - Politics, nation, entertainment, business, technology, sports
 - For all phrases in the topic, estimate average influence function by media type

Analysis of Influence

News Agencies, Personal Blogs (Blog), Newspapers, Professional Blogs, TV

- Politics is dominated by traditional media
 Blogs:
 - Influential for Entertainment phrases
 - Influence lasts longer than for other media types

Tutorial Outline

Part 1: Information flow in networks

- 1.1: Data collection: How to track the flow?
- 1.2: Correcting for missing data
- 1.3: Modeling and predicting the flow
- <u>1.4: Infer networks of information flow</u>

Part 2: Rich interactions

[KDD '10, NIPS `10]

Inferring the Diffusion Network

But how does information really spread?

We only see time of mention but not the edges
Can we reconstruct (hidden) diffusion network?
[KDD '10, NIPS '10]

Inferring the Diffusion Networks

There is a hidden diffusion network:

- We only see times when nodes get "infected":
 - c₁: (a,1), (c,2), (b,3), (e,4)
 - c₂: (c,1), (a,4), (b,5), (d,6)
- Want to infer who-infects-whom network!

[KDD '10, NIPS `10]

Examples and Applications

	Virus propagation	Word of mouth & Viral marketing
Process	Viruses propagate through the network	Recommendations and influence propagate
We observe	We only observe when people get sick	We only observe when people buy products
lt's hidden	But NOT who infected whom	But NOT who influenced whom

Can we infer the underlying network?

Plan for the NETINF Algorithm

The plan for NETINF:

- Define a continuous time model of propagation
- Define the likelihood of the observed data given a graph
- Show how to efficiently compute the likelihood
- Show how to efficiently optimize the likelihood
 - Find a graph G that maximizes the likelihood
- Note:
 - There are super-exponentially many graphs, O(N^{N*N})
 - NETINF finds a near-optimal graph in O(N²)!

Information Diffusion Model

Information Diffusion Model:

Cascade reaches node *i* at time *t_i*, and spreads to *i*'s neighbors *j*:

With prob. β cascade propagates along edge (*i*,*j*) and $t_i = t_i + \Delta$

Transmission probability:

$$P_c(i,j) \propto P(t_j - t_i)$$
 if $t_j > t_i$ else ε

- ε captures influence external to the network
 - At any time a node can get infected from outside with small probability ε

Probability of a cascade tree

Information Diffusion Model:

Cascade reaches node *i* at time *t_i*, and spreads to *i*'s neighbors *j*:

With prob. β cascade propagates along edge (*i*,*j*) and $t_i = t_i + \Delta$

Transmission probability:

 $P_c(i,j) \propto P(t_j - t_i)$ if $t_j > t_i$ else ε

Prob. that cascade c propagates in a tree T

$$P(c|T) = \prod_{(u,v)\in E_T} \beta P_c(u,v) \prod_{u\in V_T, (u,x)\in E\setminus E_T} (1-\beta)$$

Edges that "propagated" Edges that failed to "propagate"

Probability of a cascade tree

• Cascade $c = \{(u, t_u), u \in V_T\}$ is d defined by node infection times: e • $c = \{ (a,1), (c,2), (b,3), (e,4) \}$ Prob. that cascade c propagates in a tree T $P(c|T) = \qquad \beta P_c(u, v) \qquad (1 - \beta)$ $(u,v) \in E_T$ $u \in V_T, (u,x) \in E \setminus E_T$ Edges that "propagated" Edges that failed to "propagate" • Note that 2^{nd} term only depends on vertex set V_T of tree T (and not the edge set E_T): Thus we approximate: $P(c|T) \approx \square P_c(v,u)$ $(u,v)\in E_T$

Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial)

Complication: Too many trees

There are many possible transmission trees:

• $c = \{(a,1), (c,2), (b,3), (e,4)\}$

Need to consider all possible directed spanning trees T supported by G:

$$P(c|G) = \sum_{T \in \mathcal{T}(G)} P(c|T)P(T|G) \propto \sum_{T \in \mathcal{T}(G)} \prod_{(u,v) \in E_T} P_c(v,u)$$

Probability of a Propagation Tree

Submodularity to the Rescue

- <u>Theorem</u>: Log-likelihood $F_c(G)$ of item c is monotonic, and submodular in edges of G:
 - Let A, B be two graphs: same nodes, different edges: $A \subset B \subset VxV$:

$$F_c(A \cup \{e\}) - F_c(A) \geq F_c(B \cup \{e\}) - F_c(B)$$

Gain of adding an edge to a "small" graph Gain of adding an edge to a "large" graph

Benefits:

- I. Efficient (and simple) optimization algorithm
- •2. Approximation guarantee (\approx 0.63 of OPT)
- 3. Tight on-line bounds on the solution quality

Submodularity to the Rescue

- NetInf algorithm: use greedy hill-climbing to maximize F_c(G):
 - Start with empty G₀ (G with no edges)
 - Add k edges (k is parameter)
 - At every step add an edge to G_i that maximizes the marginal improvement
 - $e_i = \underset{e \in G \setminus G_{i-1}}{\operatorname{argmax}} F_C(G_{i-1} \cup \{e\}) F_C(G_{i-1})$

Experimental Setup

Synthetic data:

- Take a graph G on k edges
- Simulate info. diffusion
- Record node infection times
- Reconstruct G
- Evaluation:
 - How many edges of G can we find?
 - Break-even point: 0.95
 - Performance is independent of the structure of G!

Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial)

Experiments: Real Data

- Memetracker quotes:
 - 172 million news and blog articles
 - Aug '08 Sept '09
 - Extract 343 million phrases
 - Record times t_i(w) when site w mentions quote i
- Given times when sites mention quotesInfer the network of information diffusion:
 - Who tends to copy (repeat after) whom

Diffusion Network

Diffusion Network (small part)

Conclusions and Connections

- Messages arriving through networks from real-time sources requires new ways of thinking about information dynamics and consumption:
 - Tracking information through (implicit) networks
 - Quantify the dynamics of online media
 - Predict the diffusion of information
 - And infer networks of information diffusion

Further Qs: Opinion dynamics

- Can this analysis help identify dynamics of polarization [Adamic-Glance '05]?
- Connections to mutation of information:
 - How does attitude and sentiment change in different parts of the network?
 - How does information change in different parts of the network?

References

- Meme-tracking and the Dynamics of the News Cycle, by J. Leskovec, L. Backstrom, J. Kleinberg. KDD, 2009. <u>http://cs.stanford.edu/~jure/pubs/quotes-kdd09.pdf</u>
- Patterns of Temporal Variation in Online Media by J. Yang, J. Leskovec. ACM International Conference on Web Search and Data Minig (WSDM), 2011. <u>http://cs.stanford.edu/people/jure/pubs/memeshapes-wsdm11.pdf</u>
- Modeling Information Diffusion in Implicit Networks by J. Yang, J. Leskovec. IEEE International Conference On Data Mining (ICDM), 2010. <u>http://cs.stanford.edu/people/jure/pubs/lim-icdm10.pdf</u>
- Inferring Networks of Diffusion and Influence by M. Gomez-Rodriguez, J. Leskovec, A. Krause. KDD, 2010. <u>http://cs.stanford.edu/~jure/pubs/netinf-kdd2010.pdf</u>
- On the Convexity of Latent Social Network Inference by S. A. Myers, J. Leskovec. Neural Information Processing Systems (NIPS), 2010. <u>http://cs.stanford.edu/people/jure/pubs/connie-nips10.pdf</u>
- Cost-effective Outbreak Detection in Networks by J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, N. Glance. KDD 2007. http://cs.stanford.edu/~jure/pubs/detect-kdd07.pdf
- Cascading Behavior in Large Blog Graphs by J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, M. Hurst. SDM, 2007. http://cs.stanford.edu/~jure/pubs/blogs-sdm07.pdf