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 Goal: Introduce methods and 
algorithms for Social Media Analytics

 Tutorial has two parts:
 Part 1: Information Flow
 How do we capture and model the flow of 

information through networks to:
 Predict information attention/popularity
 Detect information big stories before they happen

 Part 2: Rich Interactions
 How do we go beyond “link”/“no-link”:
 Predicting future links and their strengths
 Separating friends from foes
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 Media designed to be 
disseminated through Social 
interaction

 Web is no longer a static library 
that people passively browse 

 Web is a place where people:
 Consume and create content
 Interact with other people
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 Places where people consume, 
produce and share content:
 Internet forums
 Blogs
 Social networks
 Microblogging: Twitter
 Wikis
 Podcasts, Slide sharing, Bookmark 

sharing, Product reviews, Comments, …

 Facebook traffic tops Google (for USA)
 March 2010: FB > 7% of US traffic

http://money.cnn.com/2010/03/16/technology/facebook_most_visited
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 Any user can share and contribute 
content, express opinions, link to 
others

 This means: Web (Social Media) 
captures the pulse of humanity!
 Can directly study opinions and 

behaviors of millions of users to gain 
insights into:
 Human behavior
 Marketing analytics, product sentiment
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 Traditionally:
 Web is static library
 Search engines crawl and index the Web
 Users issue queries to find what they want

 Today:
 On-line information reaches us in small 

increments from real-time sources and 
through social networks

 How should this change our 
understanding of information, 
and of the role of networks?
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 Web as universal library vs. 
Web as current awareness medium
 Real-time information flow in social 

networks
 Real-time search: 
 “Tell me about X” vs. “Tell me what’s hot now”

 Predictive models of human 
interactions
 We need finer resolution than 

presence/absence of a link
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 Rich and big data:
 Billions users, billions contents
 Textual, Multimedia (image, videos, etc.)
 Billions of connections
 Behaviors, preferences, trends...

 Data is open and easy to access
 It’s easy to get data from Social Media
 Datasets
 Developers APIs
 Spidering the Web
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For the list of datasets see tutorial website: 
http://snap.stanford.edu/proj/socmedia-www

and also:  http://snap.stanford.edu/data
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 Social Tagging:
 CiteULike, Bibsonomy, MovieLens, 

Delicious, Flickr, Last.FM...
 http://kmi.tugraz.at/staff/markus/datasets/

 Yahoo! Firehose
 750K ratings/day, 8K reviews/day, 150K 

comments/day, status updates, Flickr, Delicious...
 http://developer.yahoo.net/blog/archives/2010/04/yahoo_updates_firehose.html

 MySpace data (real-time data, multimedia content, ...)
 http://blog.infochimps.org/2010/03/12/announcing-bulk-redistribution-ofmyspace-data/

 Spinn3r Blog Dataset, JDPA Sentiment Corpus
 http://www.icwsm.org/data/
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 Part 1: Information flow in networks
 1.1: Data collection: How to track the flow?
 1.2: Correcting for missing data 
 1.3: Modeling and predicting the flow
 1.4: Infer networks of information flow

 Part 2: Rich interactions
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 Information flow through Social Media
 Analyzing underlying mechanisms for the real-time 

spread of information through on-line networks

 Motivating questions:
 How do messages spread through social networks?
 How to predict the spread of information?
 How to identify networks over which the 

messages spread?
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 Spinn3r Dataset: http://spinn3r.com
 30 million articles/day (50GB of data)
 20,000 news sources + millions blogs and forums
 And some Tweets and public Facebook posts

 What are basic “units” of information?
 Pieces of information that propagate between 

the nodes (users, media sites, …)
 phrases, quotes, messages, links, tags
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 Would like to track units of information that:
 correspond to pieces of information: 
 events, articles, … 
 vary over the order of days, 
 and can be handled at large scale

 Ideas:
 (1) Cascading links to articles
 Textual fragments that travel 

relatively unchanged:
 (2) URLs and hashtags on Twitter
 (3) Phrases inside quotes: “…”
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Obscure 
tech story

Small tech blog

WiredSlashdot

Engadget

CNNNYTBBC
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 Bloggers write posts and refer (link) to other 
posts and the information propagates

14

[SDM ’07]
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 Identify cascades – graphs induced by a time 
ordered propagation of information
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Blogs

Posts

Time 
ordered 

hyperlinks

Information 
cascade



 Cascade shapes (ordered by decreasing frequency)
 10 million posts and 350,000 cascades

 Cascades are mainly stars (trees)
 Interesting relation between the cascade frequency 

and structure

[SDM ‘07]
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 Advantages:
 Unambiguous, precise and explicit

way to trace information flow
 We obtain both the times as well as

the trace (graph) of information flow
 Caveats:
 Not all links transmit information:
 Navigational links, templates, adds
 Many links are missing:
 Mainstream media sites do not create links
 Bloggers “forget” to link the sournce
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 Twitter information network:
 Each user generates a stream of tweets
 Users then subscribe to “follow” the streams of 

others

 3 ways to track information flow in Twitter:
 (1) Trace the spread a “hashtag” over the network
 (2) Trace the spread of a particular URL
 (3) Re-tweets
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 (1) Tracing hashtags:
 Users annotate tweets

with short tags
 Tags naturally emerge from

the community
 Given the Twitter network and time stamped posts
 If user A used hashtag #egypt at t1 and user B follows A 

and B first used the same hashtag at some later time this 
means A propagated information to B
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 (2) Tracing URLs:
 Many tweets contain

shortened (hashed) URLs
 Short-URLs are “personalized”
 If two users shorten the same URL

it will shorten to different strings

 Given the Twitter network and time stamped posts
 If user A used URL1 at t1 and B follows A and B used the 

same URL  later then A propagated information to B
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 (3) Re-tweets:
 Explicit information 

diffusion mechanism on Twitter
 B sees A’s tweet and “forwards”

it to its follower by re-tweeting
 By following re-tweet cascades

we establish the information flow
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 Advantages:
 Large network, relatively easy to collect data
 Caveat: If data is incomplete cascades break into pieces!

 Many different diffusion mechanisms
 Caveats:
 Not clear whether hashtags really diffuse
 Due to “personalization” easier to 

argue URLs diffuse
 Problem with all is that we do 

not know the “influencer”
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 Twitter network:
 Kwak et al.: http://an.kaist.ac.kr/traces/WWW2010.html

 Tweets:
 500 million tweets over 7 months
 Go to http://snap.stanford.edu/data/twitter7.html and 

“view source” and you will find the links to the 
data commented out 
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 Meme: A unit of cultural inheritance
 Extract textual fragments that travel 

relatively unchanged, through many articles:
 Look for phrases inside quotes: “…”
 About 1.25 quotes per document in Spinn3r data

 Why it works? 
Quotes…
 are integral parts of journalistic practices
 tend to follow iterations of a story as it evolves
 are attributed to individuals and have time and location

3/29/2011 Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial) 24

[KDD ‘09]
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Quote: Our opponent is someone who sees America, it seems, as being so imperfect, 
imperfect enough that he‘s palling around with terrorists who would target their own country.

[KDD ‘09]

3/29/2011 Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial)



 Goal: Find mutational variants of a quote
 Form approximate quote inclusion graph
 Shorter quote is approximate substring of a longer 

one
 Objective: In DAG 

(approx. quote 
inclusion),  delete 
min total edge 
weight s.t. each 
connected component 
has a single “sink”

26

CEFP

Nodes are quotes
Edges are inclusion relations
Edges have weights

[KDD ‘09]
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 DAG-partitioning is NP-hard but heuristics 
are effective:
 Observation: enough to know node’s parent to 

reconstruct optimal solution
 Heuristic:

Proceed top 
down and assign 
a node (keep a 
single edge) to the
strongest cluster
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CEFP

Nodes are phrases
Edges are inclusion relations
Edges have weights

[KDD ‘09]
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Volume over time of top 50 largest total volume quote clusters
August October

http://memetracker.org
28

[KDD ‘09]

3/29/2011 Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial)

http://memetracker.org/�


 Can classify individual sources by their typical 
timing relative to the peak aggregate intensity
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 Pew’s project for Excellence in journalism
 Media coverage of  the current economic crisis
 Main proponents of the debate:

30
Top republican voice ranks only 14th

60-minutes  interview

Speech in congress

Dept. of Labor release
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 Part 1: Information flow in networks
 1.1: Data collection: How to track the flow?
 1.2: Correcting for missing data 
 1.3: Modeling and predicting the flow
 1.4: Detecting/maximizing influence

 Part 2: Rich interactions
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 Users are nodes in a 
social network. 

 We know the 
network

 We focus on some 
action users have 
performed (e.g., 
tweeted about 
“mubarak”)

 We may or may not 
know which node 
influenced which 
other node
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 Goal: Find properties X 
of the complete cascade C

 We only have access to 
cascade C’ that is C with 
missing data
 Missing data regime: Each node 

of C is missing independently 
with probability p

 Properties X’ of C’ are 
inaccurate (X ≠ X’)
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target
cascade C
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true 
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 3 Parameters of the model:
 Branching: b=2
 Depth: h=3
 In-edges: k=2
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 Relatively simple to reason about
 Can calculate an exact expressions for many 

different properties of the k-tree

p = fraction of nodes 
observed in the sample

Interested in k-tree 
properties as a function of p

3/29/2011 41Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial)



Number of connected components as a function 
of k-tree model parameters (b,h,k) and missing 
data rate p:
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 Derive equations linking k-tree parameters with a 
cascade properties:
 # of nodes
 # of edges
 # of connected components =
 # of isolated nodes
 # of leaves
 Average node degree
 Out-degree of non-leaves
 Size of the largest connected component

 For each property find an “equation” that links 
model parameters (p,b,h,k) to the value
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where X’ is the # of connected 
components in the αp sample
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 Are k-trees a good model for cascades?

 How well can we correct for missing data?

 Do parameters of the model correspond to 
real cascade properties?
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 Twitter: 
 Network of 72 million nodes and 2 billion edges
 Complete set of 350 million tweets over 6 months
 Influence cascade: URL retweet cascades
 Network cascade: Pretend we do not know 

URL of which friend did you forward

 Sprinn3r blogs:
 English blogosphere posts over 2 months
 Influence cascades: Cascades 

formed by links between the blog posts
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 Yes! Curve of the model matches the empirically 
measured values of a real cascade.

Twitter cascade
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 Do significantly better than the observed 
uncorrected values!

Twitter cascades
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 Our method is most effective when more than 
20% of the data is missing

 Works well even with 90% of the data missing

Twitter cascades
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 Part 1: Information flow in networks
 1.1: Data collection: How to track the flow?
 1.2: Correcting for missing data 
 1.3: Modeling and predicting the flow
 1.4: Infer networks of information flow

 Part 2: Rich interactions
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 Q: What are temporal patterns of information 
attention?
 Item i: Piece of information (e.g., quote, url, hashtag)
 Volume xi(t): # of times i was mentioned at time t
 Volume = number of mentions = attention = popularity

 Q: Typical classes of shapes of xi(t)
53

[WSDM ‘11]
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 Given: Volume of an item over time

 Goal: Want to discover types of shapes of 
volume time series
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 Goal: Cluster time series & find cluster centers
 Time series distance function needs to be:

 K-Spectral Centroid clustering [WSDM ‘11]
55

[WSDM ‘11]
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 Quotes: 1 year, 172M docs, 343M quotes
 Same 6 shapes for Twitter: 580M tweets, 8M #tags

56

Newspaper
Pro Blog
TV
Agency
Blogs

[WSDM ‘11]
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Electric Shock Die Hard
•Spike created by News 
Agencies (AP, Reuters)
•Slow & small response of blogs
• Blogs mention 1.3 hours after 
the mainstream media
• Blog volume = 29.1%

• The only cluster that is 
dominated by Bloggers both in 
time and volume
• Blogs mention 20 min before
mainstream media
• Blog volume = 53.1%
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Different media give raise 
to different patterns
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 How much attention will information get?
 Who reports the information and when?
 1h: Gizmodo, Engadget, Wired
 2h: Reuters, Associated Press
 3h: New York Times, CNN
 How many will mention the info at time 4, 5,...?

 Motivating question: 
 If NYT mentions info at time t
 How many subsequent mentions of the info will this 

generate at time t+1, t+2, …?
58
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 Goal: 
 Predict future attention (number of mentions)

 Traditional view:
 In a network “infected” nodes 

spread info to their neighbors
 Problem:
 The network may be unknown

 Idea: Predict the future attention based on 
which nodes got “infected” in the past
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 Idea: Predict the volume based 
on who got infected in the past

 Solution: Linear Influence Model (LIM)
 Assume no network
 Model the global influence of each node 
 Predict future volume from node influences

 Advantages:
 No knowledge of network needed
 Contagion can “jump” between the nodes

60

1 3

2 4
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 K=1 contagion:
 V(t)…number of new infections at time t
 M(t)…set of newly infected nodes at time t

 How does LIM predict  the future number of 
infections V(t+1)?
 Each node u has an influence function:
 After node u gets infected, how many other nodes tend 

to get infected
 Estimate the influence function from past data
 Predict future volume using the influence 

functions of nodes infected in the past

61

t M(t) V(t)

1 u, w 2

2 v, x, y 3

3 ?
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How to predict future volume xi(t+1) of info i ?
 Node u has an influence function Iu(q):
 Iu(q): After node u gets “infected”, how many other 

nodes tend to get infected q hours later
 E.g.: Influence function of CNN: 

How many sites say the info after they see it on CNN?

 Estimate the influence function from past data

 Predict future volume using the influence 
functions of nodes infected in the past

62

[ICDM ‘10]
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LIM model:
 Volume xi(t) of i at time t
 Ai(t) … a set of nodes that

mentioned i before time t
 And let:
 Iu(q): influence function of u
 tu: time when u mentioned i

 Predict future volume as a sum of 
influences:
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 After node u mentions the info, Iu(q) other 
mentions tend to occur q hours later
 Iu(q) is not observable, need to estimate it
 Make no assumption about its shape
 Model Iu(q) as a vector: Iu(q) = [Iu(1), Iu(2), Iu(3),… , Iu(L)]
 Find Iu(q) by solving a least-squares-like problem:

64
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 Discrete non-parametric influence functions:
 Discrete time units
 Iu(t) … non-negative vector of length L

Iu(t) = [Iu(1), Iu(2), Iu(3),… , Iu(L)]

 Note: This makes no assumption 
about the shape of Iu(t)

65

L

IuHow do we estimate the 
influence functions Iu(t)?
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 Input data: K contagions, N nodes
 Write LIM as a matrix equation:

66

 Volume vector:
Vk(t) … volume of contagion k at time t

 Infection indicator matrix:
Mu,k(t) = 1 if node u gets infected by contagion k at time t

 Influence functions:
Iu(t) … influence of node u on diffusion
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 LIM as a matrix equation: V = M * I
 Estimate influence functions:

 Solve using Non-Negative Least Squares
 Well known, we use Reflective Newton Method
 Time ~1 sec when M is 200,000 x 4,000 matrix

 Predicting future volume: Simple!
 Given M and I, then
 V = M* I
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 Take top 1,000 quotes by the total volume: 
 Total 372,000 mentions on 16,000 websites

 Build LIM on 100 highest-volume websites
 xi(t) … number of mentions across 16,000 websites
 Ai(t) … which of 100 sites mentioned quote i and when

 Improvement in L2-norm over 1-time lag predictor

68

Bursty phrases Steady phrases Overall
AR 7.21% 8.30% 7.41%

ARMA 6.85% 8.71% 7.75%

LIM (N=100) 20.06% 6.24% 14.31%

[ICDM ‘10]
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 Influence functions give insights:
 Q: NYT writes a post on politics, 

how many people tend to mention it next day?
 A: Influence function of NYT for political phrases! 

 Experimental setup:
 5 media types:
 Newspapers, Pro Blogs, TVs, News agencies, Blogs
 6 topics:
 Politics, nation, entertainment, business, technology, sports
 For all phrases in the topic, estimate average 

influence function by media type
69

[ICDM ‘10]
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 Politics is dominated by traditional media
 Blogs:
 Influential for Entertainment phrases
 Influence lasts longer than for other media types

70

Politics Entertainment
News Agencies, Personal Blogs (Blog), Newspapers, Professional Blogs, TV

[ICDM ‘10]
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 Part 1: Information flow in networks
 1.1: Data collection: How to track the flow?
 1.2: Correcting for missing data 
 1.3: Modeling and predicting the flow
 1.4: Infer networks of information flow

 Part 2: Rich interactions
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 But how does information really spread?

 We only see time of mention but not the edges
 Can we reconstruct (hidden) diffusion network?

72

[KDD ’10, NIPS ‘10]

Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial)3/29/2011



 There is a hidden diffusion network:

 We only see times when nodes get “infected”:
 c1: (a,1), (c,2), (b,3), (e,4)
 c2: (c,1), (a,4), (b,5), (d,6)

 Want to infer who-infects-whom network!
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[KDD ’10, NIPS ‘10]
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Virus propagation

74

Word of mouth & 
Viral marketing

Can we infer the underlying network?

Viruses propagate
through the network

We only observe when
people get sick

But NOT who infected
whom

Recommendations and 
influence propagate

We only observe when
people buy products

But NOT who influenced
whom

Process

We observe

It’s hidden

[KDD ’10, NIPS ‘10]
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 The plan for NETINF:
 Define a continuous time model of propagation
 Define the likelihood of the observed data 

given a graph
 Show how to efficiently compute the likelihood
 Show how to efficiently optimize the likelihood
 Find a graph G that maximizes the likelihood

 Note:
 There are super-exponentially many graphs, O(NN*N)
 NETINF finds a near-optimal graph in O(N2)!

75

[KDD ’10, NIPS ‘10]
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 Information Diffusion Model:
 Cascade reaches node i at time ti, 

and spreads to i’s neighbors j:
With prob. β cascade propagates 
along edge (i,j) and tj = ti+Δ

 Transmission probability:
Pc(i,j) ∝ P(tj -ti ) if tj > ti else  ε

 ε captures influence external to the network
 At any time a node can get infected from outside with 

small probability ε
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 Information Diffusion Model:
 Cascade reaches node i at time ti, 

and spreads to i’s neighbors j:
With prob. β cascade propagates 
along edge (i,j) and tj = ti+Δ

 Transmission probability:
Pc(i,j) ∝ P(tj -ti ) if tj > ti else  ε

 Prob. that cascade c propagates in a tree T
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Edges that “propagated” Edges that failed to “propagate”
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 Cascade c = {(u, tu), u∈VT} is 
defined by node infection times:
 c = { (a,1), (c,2), (b,3), (e,4) }

 Prob. that cascade c propagates in a tree T

 Note that 2nd term only depends on vertex set VT
of tree T (and not the edge set ET):

 Thus we approximate:
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 There are many possible transmission trees:
 c = {(a,1), (c,2), (b,3), (e,4)}

 Need to consider all possible directed 
spanning trees T supported by G:
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 Consider the most likely propagation tree
 Log-likelihood of item c in graph G:

 Log-likelihood of G given a set of items C:
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The problem is NP-hard: 
MAX-k-COVER [KDD ’10]

Our algorithm solve it 
near-optimally in O(N2)
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 Theorem:  Log-likelihood FC(G) of item c is 
monotonic, and submodular in edges of G:
 Let A, B be two graphs: same nodes, different 

edges: A ⊆ B ⊆ VxV:

 Benefits:
1. Efficient (and simple) optimization algorithm
2. Approximation guarantee ( ≈ 0.63 of OPT)
 3. Tight on-line bounds on the solution quality
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Gain of adding an edge to a “small” graph Gain of adding an edge to a “large“ graph

FC(A ∪ {e}) – FC (A)   ≥  FC (B ∪ {e}) – FC (B)
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 NetInf algorithm: use greedy hill-climbing to 
maximize FC(G):
 Start with empty G0 (G with no edges)
 Add k edges (k is parameter)
 At every step add an edge to Gi that 

maximizes the marginal improvement
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 Synthetic data:
 Take a graph G on k edges
 Simulate info. diffusion
 Record node infection times
 Reconstruct G

 Evaluation:
 How many edges of G 

can we find?
 Break-even point: 0.95
 Performance is independent 

of the structure of G!
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 Memetracker quotes:
 172 million news and blog articles 
 Aug ‘08 – Sept ‘09
 Extract 343 million phrases
 Record times ti(w) when site w mentions quote i

 Given times when sites mention quotes
 Infer the network of information diffusion:
 Who tends to copy (repeat after) whom
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 5,000 news sites:
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Blogs
Mainstream media
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Blogs
Mainstream media
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 Messages arriving through networks from 
real-time sources requires new ways of thinking 
about information dynamics and consumption:

 Tracking information through (implicit) networks
 Quantify the dynamics of online media
 Predict the diffusion of information
 And infer networks of information diffusion
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 Can this analysis help identify dynamics of 
polarization [Adamic-Glance ‘05]?

 Connections to mutation of information:
 How does attitude and sentiment change in 

different parts of the network?
 How does information change in different parts of 

the network?
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 Meme-tracking and the Dynamics of the News Cycle, by J. Leskovec, L. Backstrom, 
J. Kleinberg. KDD, 2009. http://cs.stanford.edu/~jure/pubs/quotes-kdd09.pdf

 Patterns of Temporal Variation in Online Media by J. Yang, J. Leskovec. ACM 
International Conference on Web Search and Data Minig (WSDM), 2011.
http://cs.stanford.edu/people/jure/pubs/memeshapes-wsdm11.pdf

 Modeling Information Diffusion in Implicit Networks by J. Yang, J. Leskovec. IEEE 
International Conference On Data Mining (ICDM), 2010.
http://cs.stanford.edu/people/jure/pubs/lim-icdm10.pdf

 Inferring Networks of Diffusion and Influence by M. Gomez-Rodriguez, J. Leskovec, 
A. Krause. KDD, 2010.  http://cs.stanford.edu/~jure/pubs/netinf-kdd2010.pdf

 On the Convexity of Latent Social Network Inference by S. A. Myers, J. 
Leskovec. Neural Information Processing Systems (NIPS), 2010. 
http://cs.stanford.edu/people/jure/pubs/connie-nips10.pdf

 Cost-effective Outbreak Detection in Networks by J. Leskovec, A. Krause, C. 
Guestrin, C. Faloutsos, J. VanBriesen, N. Glance. KDD 2007.
http://cs.stanford.edu/~jure/pubs/detect-kdd07.pdf

 Cascading Behavior in Large Blog Graphs by J. Leskovec, M. McGlohon, C. 
Faloutsos, N. Glance, M. Hurst. SDM, 2007. 
http://cs.stanford.edu/~jure/pubs/blogs-sdm07.pdf
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