Ecuatia: $x_{n+1} = ax_n + b$ (de ordinul I)

Solutia generala:
$$x_n = \left(x_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}$$

Observatie: daca $a=1 \Rightarrow x_n = x_0 + nb$

Ecuatia: $x_{n+2} + ax_{n+1} + bx_n = 0$ (de ordinal II)

Daca r_1 si r_2 sunt radacinile ecuatiei: r^2 + ar + b = 0 Atunci solutia generala este:

$$x_n = c_1 r_1^n + c_2 r_2^n$$
 daca r_1 diferit de r_2

$$x_n = c_1 r_1^n + c_2 n r_1^n daca r_1 = r_2$$

Difference Equations: A linear first order difference equation with constant coefficients is:

$$x_{n+1} = ax_n + b, \quad n = 0, 1, 2, \dots$$

Here, a and b are constants. If b=0, we obtain the homogeneous equation

$$x_{n+1} = ax_n, \quad n = 0, 1, 2, \dots$$

The homogeneous equations are easy:

$$x_{1} = ax_{0}$$

$$x_{2} = ax_{1} = a^{2}x_{0}$$

$$x_{3} = ax_{2} = a^{3}x_{0}$$

$$x_{4} = ax_{3} = a^{4}x_{0}$$

$$\vdots$$

$$x_{n} = ax_{n-1} = a^{n}x_{0}$$

In other words,

$$x_{n+1} = ax_n \quad \Rightarrow \quad x_n = a^n x_0$$

Let's try to solve the nonhomogeneous equation $x_{n+1} = ax_n + b$ in the same way:

$$x_{1} = ax_{0} + b$$

$$x_{2} = ax_{1} + b = a^{2}x_{0} + ab + b$$

$$x_{3} = ax_{2} + b = a^{3}x_{0} + a^{2}b + ab + b$$

$$\vdots$$

$$x_{n} = a^{n}x_{0} + a^{n-1}b + \dots + a^{2}b + ab + b$$

Consider the following identities:

$$(1-a)(1+a) = (1-a^2)$$

$$(1-a)(1+a+a^2) = (1-a^3)$$

$$(1-a)(1+a+a^2+a^3) = (1-a^4)$$

$$\vdots$$

We can see that for the general case, the formula is:

$$(1-a)(1+a+a^2+a^3+\cdots+a^{n-1})=(1-a^n)$$

We can easily show this by multiplying the expressions on the left and simplifying. If we rearrange this formula, we obtain:

$$1 + a + a^2 + a^3 + \dots + a^{n-1} = \frac{1 - a^n}{1 - a} = \frac{a^n - 1}{a - 1}, \quad a \neq 1$$

If a=1 we obtain:

$$1 + a + a^2 + a^3 + \dots + a^{n-1} = n$$

Now, we can express the solution of the nonhomogeneous difference equation

$$x_{n+1} = ax_n + b, \quad n = 0, 1, 2, \dots$$

as follows:

• If
$$a \neq 1$$
:
$$x_n = a^n x_0 + b \frac{a^n - 1}{a - 1}$$

• If
$$a = 1$$
: $x_n = x_0 + nb$

Second Order Difference Equations: A second order linear homogeneous difference equation with constant coefficients is:

$$x_{n+2} + ax_{n+1} + x_n = 0, \quad n = 0, 1, 2, \dots$$

where a and b are constants. We can try a solution of the form $x_n = r^n$. Then, we obtain:

$$r^{n+2} + ar^{n+1} + br^n = 0$$

$$r^2 + ar + b = 0$$

Note that, for this type of equation:

- A multiple of a solution is also a solution.
- Sum of two solutions is also a solution.

If there are two distinct roots r_1 and r_2 , the general solution is:

$$x_n = c_1 r_1^n + c_2 r_2^n$$

If there is a double root r, the general solution is:

$$x_n = c_1 r^n + c_2 n r^n$$

(We do not consider complex roots in this course.)

If two initial conditions are given, we can determine c_1 and c_2 . This method is very similar to the one we used for second order linear homogeneous differential equations.